# Effect of a Charge Relay on the Vibrational Frequencies of Carbonmonoxy Iron Porphine Adducts: The Coupling of Changes in Axial Ligand Bond Strength and Porphine Core Size

## Stefan Franzen

Contribution from the Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695

Received April 9, 2001

Abstract: The effect of a charge relay involving Asp-His-Fe in peroxidase enzymes is explored using density functional theory (DFT) calculations of vibrational spectra and potential energy surfaces of carbonmonoxy model systems. The series of models consists of a carbonmonoxy iron porphine molecule with a trans imidazole ligand hydrogen-bonded to six different partners at the N $\delta$  position. Calculations on the oxy system and on models of the Asp-His-Ser catalytic triad of serine proteases were also performed to obtain an understanding of how the redistribution of charge in these systems may contribute to enzymatic function. The goal of the study is to relate the experimental frequencies in resonance Raman and Fourier transform infrared studies to bonding that is important for the function of heme enzymes. Calculations of both axial and in-plane modes exhibit trends that agree with experimental data. Comparisons of the charge distribution on the different models show that polarization of iron carbonomonoxy bonds consistent with the mechanism for peroxidase function leads to a frequency reduction in the C–O stretching mode  $\nu_{CO}$ . The combination of axial trans  $\sigma$ -bonding and  $\pi$ -bonding effects that include expansion of the porphine core result in little change in the Fe–C stretching frequency  $\nu_{\rm Fe-CO}$  in the series of molecules studied with different N $\delta$ -H hydrogen bonding. A particular role for the core size is discussed that demonstrates the applicability of trends observed in vibrational spectroscopy of hemes to the charge relay mechanism and other axial ligation effects. The bonding interactions described account for the increase in electron density on bound diatomic ligands, which is required for peroxidase function.

#### Introduction

Charge relay mechanisms are key to the modulation of reactivity at the heme iron in heme proteins.<sup>1–3</sup> A charge relay consists of a hydrogen bonding network that tunes the basicity of an axial ligand to the heme iron to support oxidation states greater than Fe(III).<sup>2,4</sup> The Fe(IV) iron oxidation state is important in peroxidases, oxidases, monooxygenases, catalases, and other heme enzymes where homo- or heterolytic cleavage of bound oxygen or peroxide occurs. The Fe(IV) oxo intermediates known as compound I and compound II are stabilized by negative charge density on imidazole, cysteinate, or tyrosinate. The protein electrostatic environment stabilizes anionic cysteinate ligation of the heme in the cytochrome P450 superfamily.<sup>5</sup> Specific hydrogen bonding interactions stabilize tyrosinate in catalase.3 In peroxidases, where imidazole is polarized by the electrostatic interactions with aspartate or other protein residues, the fine-tuning of reactivity by changes in electrostatic environment is a major determinant of the electron density on the bound oxy or peroxy species. A charge relay involving hydrogen bonding has been suggested in cytochrome c peroxidase, sulfite reductase, and CooA.<sup>2,4,6</sup> The specific mechanism

(4) Vogel, K. M.; Spiro, T. G.; Shelver, D.; Thorsteinsson, M. V.; Roberts, G. P. *Biochemistry* **1999**, *38*, 2679–2687.

(5) Poulos, T. L.; Raag, R. FASEB J. 1992, 6, 674-679.

for control of histidine reactivity and stability is apparent in the hydrogen bonding to the N $\delta$ -H hydrogen of histidine in globins, oxidases, peroxidases, and a large number of other heme enzymes.<sup>7</sup> Figure 1 shows a proposed charge relay derived from studies of peroxidases where aspartate (modeled as acetate) forms a strong hydrogen bond to the N $\delta$ -H position of histidine (modeled as imidazole) to form an Asp-His-Fe charge relay. Distal effects are also important, and these enzymes typically have appropriate histidine or arginine side chains capable of controlling the protonation state of bound intermediates;<sup>8-13</sup> however, distal effects are not included in this study. The present study addresses the proximal effect of such a charge relay on electronic structure by connecting vibrational spectroscopic data from studies of the carbonmonoxy adducts to a bonding picture relevant for the proximal charge relay in histidine-ligated heme enzymes.

Carbon monoxide has been a common diatomic ligand for studies of heme protein electrostatic effects and dynamics. CO

- (7) Decatur, S. M.; Belcher, K. L.; Rickert, P. K.; Franzen, S.; Boxer, S. G. *Biochemistry* **1999**, *38*, 11086–11092.
- (8) Das, T. K.; Friedman, J. M.; Kloek, A. P.; Goldberg, D. E.; Rousseau, D. L. *Biochemistry* **2000**, *39*, 837–842.
- (9) Balasubramanian, S.; Lambright, D. G.; Boxer, S. G. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 4718–4722.
- (10) Kim, S.; Deinum, G.; Gardner, M. T.; Marletta, M. A.; Babcock,
   G. T. J. Am. Chem. Soc. 1996, 118, 8769–8770.
  - (11) Kushkeley, B.; Stavrov, S. Biophys. J. 1996, 70, 1214-1229.

(12) Cameron, A. D.; Smerdon, S. J.; Wilkinson, A. J.; Habash, J.; Helliwell, J. R.; Li, T. S.; Olson, J. S. *Biochemistry* **1993**, *32*, 13061–13070.

(13) Ling, J. H.; Li, T. S.; Olson, J. S.; Bocian, D. F. Biochim. Biophys. Acta: Bioenergetics 1994, 1188, 417–421.

<sup>(1)</sup> Spiro, T. G.; Smulevich, G.; Su, C. *Biochemistry* **1990**, *29*, 4497–4508.

<sup>(2)</sup> Goodin, D. B.; McRee, D. E. *Biochemistry* 1993, *32*, 3313–3324.
(3) Putnam, C. D.; Arvai, A. S.; Bourne, Y.; Tainer, J. A. *J. Mol. Biol.* 2000, *296*, 295–309.

<sup>(6)</sup> Crane, B. R.; Siegel, L. M.; Getzoff, E. D. *Biochemistry* **1997**, *36*, 12101–12119.



**Figure 1.** Stick representation of the imidazole carbonmonoxy iron porphine adduct with acetate hydrogen bonded to the N $\delta$ -H position of imidazole. The circle identifies the substitution site in the model calculations. The charge relay is modeled by replacing acetate by a range of hydrogen bond partners given in Table 1. The model structure represents the Asp-His-Fe catalytic triad found in peroxidase enzymes.

is inert, and yet Fe–CO and C–O stretching bands observed in resonance Raman and infrared (IR) spectra<sup>1,11,14–21</sup> serve as sensitive probes of the electrostatic environment in a range of heme proteins including peroxidases, oxidases, monooxygenases, prostaglandin synthase, and globins.<sup>19,22–26</sup> Calculated substituent effects can be divided into trans-effects (proximal), cis-effects (equatorial), and distal effects (see Figure 1). Recently, semiempirical calculations have been applied to the study of proximal/distal side effects using a point charge model,<sup>11</sup> and density Functional theory (DFT) calculations of model meso-substituted porphines have been used to model equatorial substituent effects.<sup>27</sup>A number of studies have also addressed various aspects of hydrogen bond effects on the distal side.<sup>28–32</sup> The calculated effects agree with the experimentally determined inverse correlation of Fe–CO and C–O stretching

(14) Ramsden, J.; Spiro, T. G. Biochemistry 1989, 28, 3125-3128.

(15) Ray, G. B.; Li, X.-Y.; Ibers, J. A.; Sessler, J. L.; Spiro, T. G. J. Am. Chem. Soc. **1994**, 116, 162–176.

- (16) Lim, M.; Jackson, T. A.; Anfinrud, P. A. Science **1995**, 269, 962–965.
- (17) Laberge, M.; Vanderkooi, J. M.; Sharp, K. A. J. Phys. Chem. B 1996, 100, 10793–10801.
- (18) Anderton, C. L.; Hester, R. E.; Moore, J. N. Biochim. Biophys. Acta 1997, 1338, 107–120.
- (19) Phillips, J., G. N.; Teodoro, M. L.; Li, T.; Smith, B.; Olson, J. S. J. Phys. Chem. B **1999**, 103, 8817–8829.
- (20) Kaposi, A. J.; Fidy, J.; Manas, E. S.; Vanderkooi, J. M.; Wright, W. W. Biochim. Biophys. Acta **1999**, 1435, 41-50.
- (21) Decatur, S. M.; Boxer, S. G. Biochem. Biophys. Res. Commun. 1995, 212, 159-164.
- (22) Evangelista-Kirkup, R.; Smulevich, G.; English, A.; Spiro, T. G. *Biochemistry* **1986**, *25*, 4420–4425.
- (23) Park, K. D.; Guo, K.; Adebodun, F.; Chiu, M. L.; Sligar, S. G.; Oldfield, E. *Biochemistry* **1991**, *30*, 2333–2347.
- (24) Uno, T.; Nishimura, Y.; Tsuboi, M.; Makino, R.; T, I.; Iashimura, Y. J. Biol. Chem. 1987, 262, 4549–4556.
- (25) Tsubaki, M.; Srivastava, R. B.; Yu, N.-T. *Biochemistry* **1982**, *21*, 1132–1140.
- (26) Lou, B. S.; Snyder, J. K.; Marshall, P.; Wang, J. S.; Wu, G.; Kulmacz, R. J.; Tsai, A. L.; Wang, J. L. *Biochemistry* **2000**, *39*, 12424–12434.
- (27) Vogel, K. M.; Kozlowski, P. M.; Zgierski, M. Z.; Spiro, T. G. Inorg. Chim. Acta 2000, 297, 11–17.
- (28) Groot, M. J. d.; Havenith, R. W. A.; Vinkers, H. M.; Zwaans, R.; Vermeulen, N. P. E.; Lenthe, J. H. v. J. Comput.-Aided. Mol. Des. 1998, 12, 183–193.
- (29) Wirstam, M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Am. Chem. Soc. 1999, 121, 10178–10185.
- (30) Loew, G.; Dupuis, M. J. Am. Chem. Soc. 1996, 118, 10584–10587.
  (31) Kuramochi, H.; Noodleman, L.; Case, D. A. J. Am. Chem. Soc. 1997, 119, 11442–11451.
- (32) Nishida, Y. Inorg. Chem. Commun. 2000, 3, 310-312.

mode frequencies known as  $\pi$ -back-bonding.<sup>1</sup> A strengthening of the Fe–C bond due to an increase in  $d\pi$  electron density on the iron decreases the strength of the C–O bond by putting more electron density into the  $\pi^*$  orbital of bound CO. The role of the trans-effect is of great interest because of its functional relevance. Moreover, orbital symmetry suggests that strong hydrogen bonding to N $\delta$ -H results in strong  $\sigma$ -bonding of N $\epsilon$  to the heme iron in addition to the  $\pi$ -bonding interactions that are evident in the experimental data. In fact, the strong  $\sigma$ -donor character of mercaptide ligands has been shown by both experiment and calculation to lower the frequency of the Fe-CO and C-O stretches in parallel.<sup>1,27</sup> Polarization of imidazole should also affect the  $\sigma$ -donor character of the N $\epsilon$  lone pair, a key step in the charge relay mechanism responsible for increasing electron density on heme-bound diatomic ligands and peroxide. The present density functional theory (DFT) study of the effect charge relay on the C–O potential surface addresses the nature of the trans-effect due to hydrogen bond interactions with N $\delta$ -H of the proximal imidazole by comparison with experimental data on the vibrational frequencies of both inplane and axial ligand modes.

Our approach to modeling the spectra is to use DFT to calculate vibrational spectra and potential energy surfaces for a series of trans imidazoles and imidazolates in the ironporphine-CO adduct shown in Figure 1. Figure 1 shows aspartate hydrogen bonded to the imidazole at the N $\delta$ -H position. A series of hydrogen bond donors given in Table 1 were compared in order to systematically modulate the charge density on the iron. The genesis of this model is the well-studied hydrogen-bonding of Asp235 to His175 in cytochrome cperoxidase.<sup>2</sup> This hydrogen-bond pattern presents a catalytic triad of Asp-His-Fe in peroxidases analogous to the Asp-His-Ser of serine proteases shown in Figure 2. A similar motif appears in a number of enzymes, including cysteine proteases and even selenocysteine proteases and peroxidases.33,34 In the hydrolytic enzymes, the role of Asp in the triad is to increase the basicity of the imidazole ring of histidine. The  $\sigma$ -donor strength of the histidine in turn polarizes the nucleophilic ligand (serine, cysteine, or selenocysteine) by increased hydrogen bond strength.<sup>33,34</sup> Our study investigates the role of both  $\sigma$ -bonding and  $\pi$ -bonding induced by a change in electron density on the imidazole ligand trans to bound CO. These effects are compared to a model for charge relay in serine proteases, the catalytic triad Asp-His-Ser shown in Figure 2. One significant difference between the proteases and peroxidases is the presence of the heme (here modeled by porphine). The effect of altered electron density at the heme iron is complicated by equatorial (cis) effects on the porphine ring due to changes in the iron core size. This effect is key to the effects of various proximal ligands or changes in the basicity of the imidazole of globins and peroxidases. The goal of this theoretical study is to understand the information presented by the correlation of vibrational frequencies of the  $v_{\rm Fe-CO}$  and  $v_{\rm CO}$  stretching modes and the core size marker modes that consist of non-totally symmetric modes  $\nu_{10}$  and  $\nu_{11}$  as well as totally symmetric modes  $v_2$  and  $v_3$ . We consider the functional relevance of  $\sigma$ -bonding as it affects both trans and cis  $\pi$ -bonding by expansion of the iron core.

The analogy between Asp-His-Ser and Asp-His-Fe is examined in light of the differences in  $\pi$ -bonding in the two systems. The extent of hydrogen bonding or deprotonation at N $\delta$  on the basicity at N $\epsilon$  in the Asp-His-Ser system shown in Figure 2 determines the relative energy of the N $\epsilon$  lone pair that is

<sup>(33)</sup> Buhling, F.; Fengler, A.; Brandt, W.; Welte, T.; Ansorge, S.; Nagler, D. K. *Cell. Peptidases Immune Funct. Dis.* **2000**, *477*, 241–254.

<sup>(34)</sup> Arthur, J. R. Cell. Mol. Life Sci. 2000, 57, 1825-1835.

Table 1. Ligands and Hydrogen Bond Partners Studied by Density Functional Theory

| acronym                                                      | proximal ligand<br>(dihedral angle, deg)                                                                                                       | N $\delta$ -H hydrogen bond species                                                                  | H-bond distance                                                                              | H-bond<br>angle                                                                                                                               | heme<br>deformation <sup>a</sup>                                                                                                   |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| IM<br>IM45<br>IMH2<br>IMNMA<br>IMACET<br>IMA<br>IMAH2<br>H2O | imidazole (3)<br>imidazole (44)<br>imidazole (1)<br>imidazole (32)<br>imidazole (42)<br>imidazolate (1)<br>imidazolate (6)<br>H <sub>2</sub> O | NA<br>NA<br>H <sub>2</sub> O<br><i>N</i> -methylacetamide<br>acetate<br>NA<br>H <sub>2</sub> O<br>NA | NA<br>NA<br>Nδ−HO (1.97 Å)<br>Nδ−HO (1.79 Å)<br>Nδ−HO (1.50 Å)<br>NA<br>Nδ−HO (1.82 Å)<br>NA | none<br>none<br>N $\delta$ -H-O-H (119.5°)<br>N $\delta$ -H-O=(158.25°)<br>N $\delta$ -H-O-C (108.67°)<br>NA<br>N $\delta$ -H (179.62°)<br>NA | none<br>none<br>ruffling ( $B_{1u}$ )<br>waving ( $E_g$ )<br>ruffling ( $B_{1u}$ )<br>ruffling ( $B_{1u}$ )<br>doming ( $A_{2u}$ ) |
| 5CO                                                          | NA                                                                                                                                             | NA                                                                                                   | NA                                                                                           | NA                                                                                                                                            | doming (A <sub>2u</sub> )                                                                                                          |

<sup>a</sup> Following the classification of Shelnutt.<sup>55</sup>



**Figure 2.** Stick model of the catalytic triad of serine proteases with acetate hydrogen bonded to the N $\delta$ -H position of imidazole. The circle identifies the substitution site in the model calculations. The charge relay was modeled for the same set of hydrogen bond partners as the iron porphine system. The model structure represents the Asp-His-Ser molecular charge relay hypothesized to account for the reactivity of serine proteases.

involved in a hydrogen bond with the serine hydroxyl group. For serine proteases, this hydrogen bonding interaction results in greater electron density on the catalytic serine nucleophile. Despite these differences, strong similarities emerge from the DFT calculations. One of the major similarities of the two systems that will emerge from our study is that the charge density on the oxygen atom of methanol (Figure 2), the terminal oxygen of bound carbon monoxide, or bound dioxygen (Figure 1) increases as a result of N $\delta$ -H hydrogen bonding. Moreover, the serine O-H, porphine Fe-CO bond, and C-O bonds are all three weakened by increasing polarization of the imidazole in the relay. This polarization is transmitted through both  $\sigma$ and  $\pi$ -effects, and our hypothesis is that the  $\pi$ -effect is required to achieve the type of reactivity found in peroxidases. The charge density on dioxygen increases, and the O-O bond becomes more dipolar. The net effect is to increase the charge on the terminal oxygen (i.e.  $Fe^{\delta +} - O - O^{\delta -}).$  The partial negative charge facilitates protonation of the terminal oxygen, which leads to the O-O scission step and compound I, PFe<sup>III</sup>-O-O-H +  $H^+ \rightarrow P^+Fe^{IV} = O + H_2O$ . The increased  $\pi$ -density is required for polarization because trans  $\sigma$ -bonding alone would repel the peroxy ligand, strengthen the O-O bond, and reduce the electron density on the terminal oxygen. Moreover, increased  $\pi$ -bonding provides some stabilization of the oxo ferryl species (P<sup>+</sup>Fe<sup>IV</sup>=O) required for homolytic cleavage. It is noteworthy that hydrogen bonding of the proximal ligand, an inherently  $\sigma$ -bonding interaction, can effect changes in  $\pi$ -bonding through the effect on the iron core size of the porphyrin ring.

Our study compares well with the body of prior experimental<sup>35–38</sup> and theoretical work (see Supporting Information).<sup>29,31,39–44</sup> The calculations presented show experimental

correlations for axial Fe-CO, C-O, core size marker, and electron density marker modes that demonstrate the effect of axial ligands on the heme active site electronic structure. The experimental trends in core size marker modes are also observed in the DFT calculated frequencies. The dependence of the electron density marker mode ( $\nu_4$ ) on the coordination sphere is observed. The present study quantifies the increase in charge density on the terminal oxygen that leads to the weakened O-O bond necessary for peroxidase function. Although peroxide binding is functionally important, it is difficult to observe peroxy adducts experimentally and even dioxygen has not been extensively studied due to autoxidation problems and the low resonance Raman cross-section. Therefore, we focus on the large body of experimental data available on CO adducts. The procedure has application to the wide range of heme enzymes with various charge relay systems that provide control over heme iron reactivity throughout the family of heme enzymes. The present study further establishes the role of CO as a probe since it explains the trends in the  $\nu_{\rm CO}$  stretching frequencies in terms of their charge distribution and changes in proximal ligation. This study suggests the need for further work to clarify the complementary role of distal side interactions with bound CO.

### Methods

The optimized ground-state geometries were obtained using both the generalized gradient approximation (GGA) of Perdew and Wang<sup>45</sup> and the BLYP functional<sup>46,47</sup> as implemented in DMol3 (Molecular Simulations Inc.).<sup>48,49</sup> All calculations were carried out on the SGI/ Cray Origin 2000 and IBM SP supercomputers at the North Carolina Supercomputer Center (NCSC). A numerically tabulated basis set of double- $\zeta$  plus quality was employed as described in the Supporting Information. The geometry optimizations were carried out until the energy difference was less than 10<sup>-6</sup> a.u. on subsequent iterations. Following geometry optimization the Hessian matrix was constructed by finite difference. Calculations on the M1 model were carried out using Gaussian98 at the NCSC.<sup>50</sup> The M1 model consists of the imidazole–iron–CO moieties in Figure 1 with the porphine ring replaced by four amidinato ( $-NH_2^-$ ) groups (see Supporting Informa-

(42) Rovira, C.; Parrinello, M. Int. J. Quantum Chem. 1998, 70, 387-394.

(43) Vogel, K. M.; Kozlowski, P. M.; Zgierski, M. Z.; Spiro, T. G. J. Am. Chem. Soc. **1999**, 121, 9915–9921.

(44) Harvey, J. N. J. Am. Chem. Soc. 2000, 122, 12401-12402.

(45) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. *Phys. Rev. B* **1992**, *46*, 6671–6687.

(46) Becke, A. D. J. Chem. Phys. 1997, 107, 8554-8560.

(47) Lee, C. L.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.

(49) Delley, B. J. Chem. Phys. 2000, 113, 7756-7764.

<sup>(35)</sup> Choi, S.; Spiro, T. G.; Langry, K. C.; Smith, K. M.; Budd, L. D.; LaMar, G. N. J. Am. Chem. Soc. **1982**, 104, 4345-.

<sup>(36)</sup> Feitelson, J.; Spiro, T. G. Inorg. Chem. 1986, 25, 861-865.

<sup>(37)</sup> Hu, S.; Smith, K. M.; Spiro, T. G. J. Am. Chem. Soc. 1996, 118, 12638–12646.

<sup>(38)</sup> Li, X. Y.; Czernuszewicz, R. S.; Kincaid, J. R.; Su, Y. O.; Spiro, T. G. J. Phys. Chem. **1990**, *94*, 31–47.

 <sup>(39)</sup> Ghosh, A.; Bocian, D. F. J. Phys. Chem. 1996, 100, 6363-6367.
 (40) Rovira, C.; Kunc, K.; Hutter, J.; Ballone, P.; Parrinello, M. J. Phys. Chem. A 1997, 101, 8914-8925.

<sup>(41)</sup> Rovira, C.; Parrinello, M. Chem. - Eur. J. 1999, 5, 250-262.

<sup>(48)</sup> Delley, B. J. Chem. Phys. 1990, 92, 508-517.

Table 2. Selected Bond Lengths Obtained from DFT Geometry Optimized Structures of Iron-Porphine-CO Models (GGA-PW92/BLYP)

| structure | Fe-C<br>GGA | Fe-C<br>BLYP | C-O<br>GGA | C-O<br>BLYP | Fe-Np<br>GGA | Fe-Np<br>BLYP | Fe-Ne<br>GGA | Fe−Ne<br>BLYP |
|-----------|-------------|--------------|------------|-------------|--------------|---------------|--------------|---------------|
| IM        | 1.786       | 1.813        | 1.157      | 1.159       | 2.020        | 2.042         | 2.074        | 2.138         |
| IMA       | 1.800       | 1.828        | 1.163      | 1.165       | 2.023        | 2.046         | 2.026        | 2.071         |
| IMH2O     | 1.788       | 1.814        | 1.157      | 1.159       | 2.020        | 2.043         | 2.071        | 2.129         |
| IMAH2O    | 1.804       | 1.824        | 1.161      | 1.164       | 2.022        | 2.046         | 2.049        | 2.077         |
| IMNMA     | 1.790       | 1.819        | 1.158      | 1.160       | 2.021        | 2.045         | 2.053        | 2.096         |
| IMACET    | 1.792       | 1.820        | 1.162      | 1.163       | 2.022        | 2.044         | 2.036        | 2.088         |
| IM45      | 1.789       | 1.814        | 1.157      | 1.159       | 2.020        | 2.041         | 2.056        | 2.118         |
| H2O       | 1.770       | 1.792        | 1.157      | 1.160       | 2.023        | 2.038         | 2.156        | 2.216         |
| 5CO       | 1.745       | 1.765        | 1.160      | 1.162       | 2.011        | 2.027         | NA           | NA            |

tion). Comparative geometry optimizations on the M1 model were carried out using Hartree–Fock (HF),<sup>51</sup>second-order Møller–Plesset peturbation theory (MP2)<sup>52,53</sup> and the BLYP functional<sup>46,47</sup> with a 6-31G\*\* basis set. AVS (Advanced Visual System) and insightII (Molecular Simulations) programs were used for visualization of the results. Conversion from Cartesian to internal coordinates and decomposition of the potential energy distribution (PED) was carried out using the program FCART.<sup>54</sup>

#### **Results and Discussion**

Geometry Optimized Structures. There are significant differences that emerge as the hydrogen bonding of the axial imidazole ligand is altered: the axial imidazole can rotate from the initial position; the heme geometry can distort from a planar starting geometry; the bond lengths of the axial ligands can be altered. Table 1 gives the dihedral angles for the imidazole ligands, porphine geometry changes, and the hydrogen bonding geometry of N $\delta$ -H of the various hydrogen-bond-forming moieties (H<sub>2</sub>O, CH<sub>3</sub>COO<sup>-</sup>, CH<sub>3</sub>CONHCH<sub>3</sub>).

The Np–Fe–N $\epsilon$ –C $\delta$  dihedral angles for the imidazole were initially at 0° prior to geometry optimization (except in the IM45 structure where the dihedral angle  $\tau$  was set to 45° at the outset of the geometry optimization). [The following abbreviations have been used for atoms in the structure shown in Figure 1: Np, pyrrole nitrogen of the porphine ring; N $\epsilon$ , the nitrogen of imidazole that is bonded to Fe; N $\delta$ , the nitrogen of imidazole the is protonated;  $C\delta$ , the carbon of imidazole bonded to N $\epsilon$ and N $\delta$ .] Since the imidazole ligands were not constrained in the calculations performed here, there are a variety of dihedral angles  $\tau$  in the different species as seen in column 2 of Table 1. The imidazole ligand to iron shows modest rotation in the IM, IMA, IMH2O, and IMAH2O models (column 2, Table 1). However, when a larger, more polarizable group hydrogen bonds to N $\delta$ -H the dihedral angle increases (column 2, Table 1). The dihedral angle of axial neutral imidazole was studied by comparison of an imidazole with a starting geometry at  $\tau = 0^{\circ}$ (IM) and one at  $\tau = 45^{\circ}$  (IM45). The effect of a rotation of the proximal ligand was found to be modest. The shorter  $Fe-N\epsilon$ bond length for  $\tau = 45^{\circ}$  is consistent with the intuition that the

 Table 3.
 Correlation Table of Distances in the Porphine Iron

 Coordination Sphere and the Bound Carbon Monoxide

| correlation                                                                                                                                                                                   | GGA intercept, slope ( <i>R</i> )                                                                                                                            | BLYP intercept,<br>slope ( <i>R</i> )                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} \text{Fe-C vs Fe-N}\epsilon \\ \text{C-O vs Fe-N}\epsilon \\ \text{Fe-Np vs Fe-N}\epsilon \\ \text{Fe-Np vs Fe-C} \\ \text{Fe-Np vs C-O} \\ \text{C-O vs Fe-C} \end{array}$ | $\begin{array}{l} 2.29, -0.24 (0.67) \\ 1.40, -0.12 (0.86) \\ 2.11, -0.04 (0.74) \\ 1.76, 0.15 (0.93) \\ 1.62, 0.35 (0.84) \\ 0.58, 0.32 (0.86) \end{array}$ | $\begin{array}{l} 2.24, -0.20\ (0.95)\\ 1.35, -0.09\ (0.89)\\ 2.15, -0.05\ (0.88)\\ 1.63, 0.23\ (0.85)\\ 1.63, 0.35\ (0.65)\\ 0.34, 0.45\ (0.93)\end{array}$ |

axial ligand will have less steric hindrance with the pyrrole nitrogens if the imidazole is not aligned along the Np–Fe–Np bonds. The effect on in-plane vibrational modes is slight, but there is significant effect on  $v_{\text{Fe}-\text{CO}}$  and  $v_{\text{CO}}$  (see below).

Changes in porphine structure can be decomposed into changes in in-plane structural coordinates and changes in outof-plane structural coordinates. Table 1 shows the out-of-plane structural changes. Table 1 indicates that the IMA, IMAH2O, and IMNMA structures are deformed along a  $B_{1u}$  normal coordinate (ruffling). The IMACET structure is distorted along an  $E_u$  normal coordinate (i.e. waving). The distortions from planar geometry in  $D_{4h}$  have been categorized by Shelnutt.<sup>55,56</sup> The in-plane structural changes consist mainly of core size expansion, which is described here as an increase in the Fe– Np bond length. In the following the average Fe–Np bond length is considered as an indicator of the porphine core size.

The geometries obtained from the two DFT functionals are very similar. The Fe-N $\epsilon$  bonds are  $\approx 2.5\%$  longer in the BLYP calculation (see Table 2). The Fe-C and Fe-Np bond lengths are  $\approx 1\%$  longer, and the C-O bonds are  $\approx 0.2\%$  longer in the BLYP calculation than in the GGA-PW92 calculation.

The correlations between the various bond lengths given in Table 3 show a distinct pattern where the Fe-C, C-O, and Fe-Np bond lengths are inversely proportional to Fe-N $\epsilon$  and directly proportional to each other. Table 3 shows correlations based on a fit to a line. The parameters for the fit, including the correlation coefficient R, are given in Table 3 as well. The negative slope for lines where d(Fe-C), d(C-O), and d(Fe-C)Np) are plotted as a function of  $d(Fe-N\epsilon)$  shows an inverse proportionality between these bond lengths throughout the series studied here. Increasing ligation strength leads to a shorter Fe-N $\epsilon$  bond and an expansion of the core size and an increase in the iron-carbon distance. The shortening of the Fe-N $\epsilon$  bond also leads to a lengthening of the C–O bond. This observation is of central importance in the description that follows. These relationships imply that the bond lengths d(Fe-C) and d(C-O) are directly proportional to d(Fe-Np) and to each other for the same set of structures. The porphine core is found to be

<sup>(50)</sup> Frisch, M. J.; G. W. T.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; J. R. C.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; J. C. B.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; K. N. K.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; M. C.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; J. O.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; D. K. M.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; J. C.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; P. P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; T. K.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; M. C.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian98*; Gaussian, Inc.: Pittsburgh, PA, 1998.

<sup>(51)</sup> Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69-76.

<sup>(52)</sup> Saebo, S.; Almlof, J. Chem. Phys. Lett. 1989, 154, 83-89.

<sup>(53)</sup> Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275-280.

<sup>(54)</sup> Collier, W. B. J. Chem. Phys. 1988, 88, 7295-7305.

<sup>(55)</sup> Jentzen, W.; Ma, J. G.; Shelnutt, J. A. *Biophys. J.* **1998**, *74*, 753-763.

<sup>(56)</sup> Howes, B. D.; Schiodt, C. B.; Welinder, K. G.; Marzocchi, M. P.; Ma, J. G.; Zhang, J.; Shelnutt, J. A.; Smulevich, G. *Biophys. J.* **1999**, *77*, 478–492.

the largest for anionic ligands and somewhat smaller for the hydrogen-bonded species IMNMA and IMACET. [The designation anionic species refers to the models that have a -1 overall charge. These are IMA, IMAH2O, and IMACET. IMA is deprotonated, and the imidazole is imidazolate anion. The IMAH2O model was geometry optimized starting with neutral imidazole hydrogen bonded to hydroxide anion. At the end of the geometry optimization the imidazole was deprotonated, so the structure is imidazolate hydrogen bonded to H<sub>2</sub>O. The IMACET structure is imidazole hydrogen bonded to acetate both at the beginning and at the end of geometry optimization.] The core is the smallest for neutral imidazole (IM) and imidazole with N $\delta$ -H hydrogen-bonded to H<sub>2</sub>O. The core size expansion plays an important role in the charge relay by converting  $\sigma$ -bonding interactions that lead to the  $d(\text{Fe}-\text{N}\epsilon) - d(\text{Fe}-\text{C})$ correlation into the  $\pi$ -bonding interactions that lead to the d(Fe-N $\epsilon$ ) – d(C–O) correlation.

The role of steric repulsion on the Fe–N $\epsilon$  bond length is seen in the comparison of IM and IM45 models (see Table 1). The Fe–N $\epsilon$  bond length shortens significantly for the IM45 geometry. In the GGA calculation the core size does not change. However, in the BLYP calculation of IM45 d(Fe–Np) is the smallest of any nitrogenous adduct in the series. The calculated trend indicates that the core size tends to expand as the ligand donor strength increases and not just due to shortening of the Fe–N $\epsilon$  bond, but also due to charge displacement onto the iron. In the following we consider how these structural trends depend on the electron density of the imidazole N $\epsilon$  position acting through a charge relay. The structural considerations indicate that one should consider both axial and equatorial bonding effects evident in vibrational spectra and calculated charge density.

The correlation of the Fe-C and C-O bond lengths is crucial to understanding the origin of charge relay effects and the relationship they have to observables such as vibrational frequencies. The bond lengths of the species given in Table 2 do not show a  $\pi$ -back-bonding correlation as the axial ligation strength is altered. Rather than an inverse relationship between d(Fe-C) and d(C-O) bond lengths expected based on the experimental frequency correlation we find that d(Fe-C) and d(C-O) change in parallel (see Table 3). For example, the Fe-C is 0.7% longer on average for the anionic species (IMA, IMAH2O, IMACET) compared to neutral imidazole (IM). The effect on the C-O bond length is somewhat smaller (0.4% longer on average) but still in parallel with the change in the Fe-C bond length. By contrast, an inverse relationship between d(Fe-C) and d(C-O) is maintained when one compares imidazole (IM), the H<sub>2</sub>O axial ligand (H2O in Table 1), and the five-coordinate iron porphine (5CO). It is clear from comparison from these considerations that there are competing effects. The nature of competing  $\sigma$ -bonding and  $\pi$ -bonding effects is considered further below in studies of the charge density shifts and change in axial bonding for the atoms N $\delta$ -N $\epsilon$ -Fe-C-O due to the charge relay.

**Vibrational Spectra. In-Plane Porphine Vibrations.** The calculated in-plane frequencies shown in Figure 3 follow the experimental trends in the well-studied core size marker modes  $\nu_2$ ,  $\nu_3$ ,  $\nu_{10}$ , and  $\nu_{11}$  and the electron density marker,  $\nu_4$ . The in-plane modes are denoted by their symmetry as Franck– Condon active A<sub>1g</sub> modes or vibronically active B<sub>1g</sub>, A<sub>2g</sub>, and B<sub>2g</sub> modes. The non-totally symmetric modes are observed in vibronic progression of the absorption spectrum or in the resonance Raman spectrum due to Herzberg–Teller interstate and Jahn–Teller intrastate coupling.<sup>57</sup> The frequencies of Raman active porphine in-plane vibrational modes given in Table 4 are in reasonable agreement with experimental data as well as



**Figure 3.** Plot of the core size marker modes and electron density marker mode for six-coordinate ferrous iron porphine model structures. The lines through data were obtained by fitting the data to eq 1 in ref 59. Fit parameters are given in the text.

other DFT treatments of the nickel porphine and iron porphine rings. [The frequencies included in Table 4 are those that have eigenvectors clearly indicative of modes of the gerade irreducible representations of  $D_{4h}$ . These modes include most of the commonly observed modes in Raman spectra of metalloporphyrins.] Nickel porphine has been shown to be a useful model for studies of hemes<sup>38,58</sup> and is used here to indicate the validity of the in-plane calculation. For example, the frequencies of the totally symmetric modes  $\nu_2$ ,  $\nu_3$ , and  $\nu_4$  observed at 1574, 1459, and 1376 cm<sup>-1</sup> in nickel porphine agree well with the calculated values for IM given in column 3 of Table 4 of 1563, 1449, and 1378 cm<sup>-1</sup>, respectively.<sup>38</sup> A comparison of the calculated imidazole iron porphine CO adduct (IM) with 21 observed nickel porphine frequencies is given in Table 4 (compare columns 2 and 3). The average deviation for the observed in-plane modes is 1.3%. The in-plane BLYP frequencies are consistently 10- $20\ {\rm cm^{-1}}$  lower than GGA frequencies and show a somewhat poorer correlation with the NiP data. However, if these 21 modes are scaled, then a reasonable agreement is obtained. The origin of the lower frequencies is attributable to the larger core size found in the equilibrium geometry using the BLYP function. The average Fe–Np distance is  $\approx 2.04$  Å for the BLYP functional and  $\approx 2.02$  Å for the GGA-PW92 functional. The frequencies can also be qualitatively compared to those of heme and heme models keeping in mind that the  $\beta$ -positions of the porphyrin ring have no substituents in the porphine model calculations (see Supporting Information).

The porphine core size increases as the axial ligand basicity increases. Figure 3 shows the frequency dependence of modes  $v_2$ ,  $v_3$ ,  $v_4$ ,  $v_{10}$ , and  $v_{11}$  on the average Fe–Np distance for a series of six-coordinate model molecules studied using the Perdew–Wang GGA density functional. In the iron–porphine models considered here the core size expands most for imidazolate (IMA) and decreases in the series IMAH2O > IMNMA > IMACET > IMH2O. The  $\approx 10 \text{ cm}^{-1}$  vibrational frequency shifts in modes  $\nu_2$ ,  $\nu_3$ ,  $\nu_{10}$ , and  $\nu_{11}$  are consistent with experimentally observed core size effects.<sup>59–61</sup>[The correlation of core size with frequency was fitted to the linear model function used previously in a number of reports.<sup>59,61</sup> The relation used was v = K(A - d) cm<sup>-1</sup>, where d is the average Fe–Np distance and the parameters  $K(\text{cm}^{-1}/\text{Å})$  and A (Å) have the values 1789 and 2.93 for  $v_{10}$ , 819 and 3.86 for  $v_{11}$ , 431 and 5.66 for  $\nu_2$ , and 1573 and 2.94 for  $\nu_3$ . Although the trends are correct, the calculated dependence is a factor of 2-3 larger than the experimental correlation reported for ferric hemes.] The shift of the electron density marker band of  $\approx 3 \text{ cm}^{-1}$  is significantly

<sup>(57)</sup> Shelnutt, J. A. J. Chem. Phys. 1981, 74, 6644-6657.

<sup>(58)</sup> Rush, I., T. S.; Kozlowski, P. M.; Piffat, C. A.; Kumble, R.; Zgierski,

M. Z.; Spiro, T. G. J. Phys. Chem. B 2000, 104, 5020-5034.
 (59) Callahan, P. M.; Babcock, G. T. Biochemistry 1981, 20, 952-958.

<sup>(60)</sup> Friedman, J. M.; Rousseau, D. L.; Ondrias, M. R. Annu. Rev. Phys. Chem. 1982, 33, 471–491.

<sup>(61)</sup> Parthasarathi, N.; Hansen, C.; Yamaguchi, S.; Spiro, T. G. J. Am. Chem. Soc. 1987, 109, 3865–3871.

**Table 4.** Comparison of Selected In-Plane Vibrational Modes of  $A_{1g}$ ,  $A_{2g}$ ,  $B_{1g}$ , and  $B_{2g}$  Symmetry for Both GGA-PW92 and BLYP DFT Calculations<sup>*a*</sup>

| vibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NiP <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Im<br>GGA                                                                                                                            | Im<br>BLYP                                                                                                                 | Im45<br>GGA                                                                                                                            | Im45<br>BLYP                                                                                                                      | Im(H2O)<br>GGA                                                                                                                            | Im(H<br>BL                                                                                                                                                                                                                  | I2O)<br>YP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N-Me<br>GGA                                                                                                              | N-Me<br>BLYP                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                            |                                                                                                                                        |                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                          |
| $\nu 2^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1563                                                                                                                                 | 1540                                                                                                                       | 1562                                                                                                                                   | 1547                                                                                                                              | 1564                                                                                                                                      | 154                                                                                                                                                                                                                         | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1559                                                                                                                     | 1538                                                                                                                                                     |
| ν3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1449                                                                                                                                 | 1442                                                                                                                       | 1448                                                                                                                                   | 1426                                                                                                                              | 1448                                                                                                                                      | 142                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1447                                                                                                                     | 1424                                                                                                                                                     |
| $\nu 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1378                                                                                                                                 | 1341                                                                                                                       | 1378                                                                                                                                   | 1348                                                                                                                              | 1378                                                                                                                                      | 134                                                                                                                                                                                                                         | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1376                                                                                                                     | 1348                                                                                                                                                     |
| ν5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С                                                                                                                                    | С                                                                                                                          | С                                                                                                                                      | С                                                                                                                                 | 1007                                                                                                                                      |                                                                                                                                                                                                                             | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С                                                                                                                        | С                                                                                                                                                        |
| ν7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 727                                                                                                                                  | 717                                                                                                                        | 725                                                                                                                                    | 711                                                                                                                               | 729                                                                                                                                       | 72                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 723                                                                                                                      | 723                                                                                                                                                      |
| $\nu 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $356^{d}$                                                                                                                            | $352^{d}$                                                                                                                  | 355 <sup>d</sup>                                                                                                                       | $355^{d}$                                                                                                                         | 367                                                                                                                                       | 3:                                                                                                                                                                                                                          | 55 <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 353                                                                                                                      | 361 <sup>d</sup>                                                                                                                                         |
| $B_{1g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                            |                                                                                                                                        |                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                          |
| v10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1632                                                                                                                                 | 1598                                                                                                                       | 1632                                                                                                                                   | 1595                                                                                                                              | 1633                                                                                                                                      | 159                                                                                                                                                                                                                         | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1629                                                                                                                     | 1596                                                                                                                                                     |
| $\nu 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1510                                                                                                                                 | 1486                                                                                                                       | 1509                                                                                                                                   | 1496                                                                                                                              | 1511                                                                                                                                      | 148                                                                                                                                                                                                                         | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1506                                                                                                                     | 1485                                                                                                                                                     |
| v13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1153                                                                                                                                 | 1190                                                                                                                       | 1197                                                                                                                                   | 1180                                                                                                                              | 1154                                                                                                                                      | 119                                                                                                                                                                                                                         | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1204                                                                                                                     | 1195                                                                                                                                                     |
| <i>v</i> 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 740                                                                                                                                  | 725                                                                                                                        | 737                                                                                                                                    | 723                                                                                                                               | 743                                                                                                                                       | 73                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 733                                                                                                                      | 731                                                                                                                                                      |
| $\nu 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 238                                                                                                                                  | 237                                                                                                                        | 239                                                                                                                                    | 220                                                                                                                               | 239                                                                                                                                       | 23                                                                                                                                                                                                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 238                                                                                                                      | 238                                                                                                                                                      |
| $A_{2g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                            |                                                                                                                                        |                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                          |
| v19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1605                                                                                                                                 | 1567                                                                                                                       | 1602                                                                                                                                   | 1567                                                                                                                              | 1606                                                                                                                                      | 150                                                                                                                                                                                                                         | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1601                                                                                                                     | 1566                                                                                                                                                     |
| $\nu 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1348                                                                                                                                 | 1359                                                                                                                       | 1347                                                                                                                                   | 1362                                                                                                                              | 1348                                                                                                                                      | 130                                                                                                                                                                                                                         | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1342                                                                                                                     | 1357                                                                                                                                                     |
| v21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1332                                                                                                                                 | 1303                                                                                                                       | 1329                                                                                                                                   | 1299                                                                                                                              | 1332                                                                                                                                      | 13                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1327                                                                                                                     | 1309                                                                                                                                                     |
| v22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1158                                                                                                                                 | 1138                                                                                                                       | 1145                                                                                                                                   | 1126                                                                                                                              | 1157                                                                                                                                      | 114                                                                                                                                                                                                                         | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1139                                                                                                                     | 1140                                                                                                                                                     |
| v23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 993                                                                                                                                  | С                                                                                                                          | 994                                                                                                                                    | 999                                                                                                                               | 1001                                                                                                                                      |                                                                                                                                                                                                                             | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 991                                                                                                                      | 988                                                                                                                                                      |
| v24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 804                                                                                                                                  | 790                                                                                                                        | 802                                                                                                                                    | С                                                                                                                                 | С                                                                                                                                         |                                                                                                                                                                                                                             | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 799                                                                                                                      | 794                                                                                                                                                      |
| $\nu 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 424                                                                                                                                  | 432                                                                                                                        | 424                                                                                                                                    | 413                                                                                                                               | 431                                                                                                                                       | 43                                                                                                                                                                                                                          | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 425                                                                                                                      | 429                                                                                                                                                      |
| $B_{2g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                            |                                                                                                                                        |                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                          |
| $\nu 28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1488                                                                                                                                 | 1465                                                                                                                       | 1485                                                                                                                                   | 1456                                                                                                                              | 1490                                                                                                                                      | 140                                                                                                                                                                                                                         | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1483                                                                                                                     | 1462                                                                                                                                                     |
| v29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1183                                                                                                                                 | 1177                                                                                                                       | 1183                                                                                                                                   | 1192                                                                                                                              | 1185                                                                                                                                      | 118                                                                                                                                                                                                                         | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1180                                                                                                                     | 1146                                                                                                                                                     |
| v30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1040                                                                                                                                 | 1029                                                                                                                       | <i>c</i>                                                                                                                               | 993                                                                                                                               | 1047                                                                                                                                      | 10.                                                                                                                                                                                                                         | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1049                                                                                                                     | 1033                                                                                                                                                     |
| v31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 818                                                                                                                                  | 817                                                                                                                        | 817                                                                                                                                    | 817                                                                                                                               | 818                                                                                                                                       |                                                                                                                                                                                                                             | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 815                                                                                                                      | 818                                                                                                                                                      |
| <i>v</i> 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 214                                                                                                                                  | 214                                                                                                                        | 216                                                                                                                                    | 208                                                                                                                               | 215                                                                                                                                       | 2                                                                                                                                                                                                                           | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 215                                                                                                                      | 219                                                                                                                                                      |
| vibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H2O<br>GGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H2O<br>BLYP                                                                                                                          | Im<br>GGA                                                                                                                  | Im<br>BLYP                                                                                                                             | Im(H2O)<br>GGA                                                                                                                    | Im(H2O)<br>BLYP                                                                                                                           | acetate<br>GGA                                                                                                                                                                                                              | acetate<br>BLYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5CO<br>GGA                                                                                                               | 5CO<br>BLYP                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                            |                                                                                                                                        |                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                          |
| $A_{1g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1544                                                                                                                                 | 1568                                                                                                                       | 1561                                                                                                                                   | 1560                                                                                                                              | 15/2                                                                                                                                      | 1557                                                                                                                                                                                                                        | 1524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1562                                                                                                                     | 1534                                                                                                                                                     |
| v2<br>v3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1344                                                                                                                                 | 1//8                                                                                                                       | 1442                                                                                                                                   | 1//0                                                                                                                              | 1343                                                                                                                                      | 1557                                                                                                                                                                                                                        | 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1452                                                                                                                     | 1334                                                                                                                                                     |
| V 3<br>V/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1424                                                                                                                                 | 1375                                                                                                                       | 1367 <sup>e</sup>                                                                                                                      | 1377                                                                                                                              | 1346                                                                                                                                      | 1377                                                                                                                                                                                                                        | 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1452                                                                                                                     | 1424                                                                                                                                                     |
| v4<br>v5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 <del>4</del> 0                                                                                                                    | 1025                                                                                                                       | 1507                                                                                                                                   | 15/7                                                                                                                              | 1340                                                                                                                                      | 1577                                                                                                                                                                                                                        | 981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 987                                                                                                                      | 1555                                                                                                                                                     |
| v7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 720                                                                                                                                  | 731                                                                                                                        | 731                                                                                                                                    | 727                                                                                                                               | 724                                                                                                                                       | 722                                                                                                                                                                                                                         | 716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 711                                                                                                                      | 718                                                                                                                                                      |
| $\nu 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $362^{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 362d                                                                                                                                 | 751                                                                                                                        | 151                                                                                                                                    |                                                                                                                                   | 1/4                                                                                                                                       | 1/.1                                                                                                                                                                                                                        | /10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                          | 110                                                                                                                                                      |
| Big                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .002                                                                                                                                 | 368                                                                                                                        | $360^{d}$                                                                                                                              | 367                                                                                                                               | 351                                                                                                                                       | 353 <sup>d</sup>                                                                                                                                                                                                            | $364^{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 360                                                                                                                      | 361 <sup>a</sup>                                                                                                                                         |
| w10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 502                                                                                                                                  | 368                                                                                                                        | 360 <sup>d</sup>                                                                                                                       | 367                                                                                                                               | 351                                                                                                                                       | 353 <sup>d</sup>                                                                                                                                                                                                            | $364^{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 360                                                                                                                      | 361 <sup><i>d</i></sup>                                                                                                                                  |
| V10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1606                                                                                                                                 | 368<br>1632                                                                                                                | 360 <sup>d</sup>                                                                                                                       | 367<br>1633                                                                                                                       | 351<br>1594                                                                                                                               | 353 <sup>d</sup>                                                                                                                                                                                                            | 364 <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 360<br>1620                                                                                                              | 361 <sup>a</sup><br>1610                                                                                                                                 |
| $\nu 10 $<br>$\nu 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1625<br>1501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1606<br>1489                                                                                                                         | 368<br>1632<br>1512                                                                                                        | 360 <sup>d</sup><br>1622<br>1501                                                                                                       | 367<br>1633<br>1513                                                                                                               | 351<br>1594<br>1486                                                                                                                       | 1624<br>1498                                                                                                                                                                                                                | 1588<br>1478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 360<br>1620<br>1515                                                                                                      | 361 <sup>a</sup><br>1610<br>1485                                                                                                                         |
| $\nu 10 \\ \nu 11 \\ \nu 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1625<br>1501<br>1197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1606<br>1489<br>1197                                                                                                                 | 368<br>1632<br>1512<br>1200                                                                                                | 360 <sup>d</sup><br>1622<br>1501<br>1216                                                                                               | 367<br>1633<br>1513<br>1202                                                                                                       | 1594<br>1486<br>1198                                                                                                                      | 1624<br>1498<br>1194                                                                                                                                                                                                        | 1588<br>1478<br>1160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 360<br>1620<br>1515<br>1184                                                                                              | 361 <sup><i>d</i></sup><br>1610<br>1485<br>1155                                                                                                          |
| $     \nu 10 \\     \nu 11 \\     \nu 13 \\     \nu 16   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1625<br>1501<br>1197<br>734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1606<br>1489<br>1197<br>732                                                                                                          | 368<br>1632<br>1512<br>1200<br>735                                                                                         | 360 <sup>d</sup><br>1622<br>1501<br>1216<br>742                                                                                        | 367<br>1633<br>1513<br>1202<br>735                                                                                                | 724<br>351<br>1594<br>1486<br>1198<br>727                                                                                                 | 1624<br>1498<br>1194<br>718                                                                                                                                                                                                 | 1588<br>1478<br>1160<br>711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 360<br>1620<br>1515<br>1184<br>722                                                                                       | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728                                                                                                   |
| v10<br>v11<br>v13<br>v16<br>v18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1625<br>1501<br>1197<br>734<br>238b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup>                                                                                      | 368<br>1632<br>1512<br>1200<br>735<br>240                                                                                  | 360 <sup>d</sup><br>1622<br>1501<br>1216<br>742<br>241                                                                                 | 367<br>1633<br>1513<br>1202<br>735<br>240                                                                                         | 1594<br>1594<br>1486<br>1198<br>727<br>235                                                                                                | 1624<br>1624<br>1498<br>1194<br>718<br>233                                                                                                                                                                                  | 1588<br>1478<br>1160<br>711<br>228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360<br>1620<br>1515<br>1184<br>722<br>225                                                                                | 361 <sup><i>d</i></sup><br>1610<br>1485<br>1155<br>728<br>238                                                                                            |
| v10<br>v11<br>v13<br>v16<br>v18<br>A <sub>2g</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1625<br>1501<br>1197<br>734<br>238b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup>                                                                                      | 368<br>1632<br>1512<br>1200<br>735<br>240                                                                                  | 360 <sup><i>d</i></sup><br>1622<br>1501<br>1216<br>742<br>241                                                                          | 367<br>1633<br>1513<br>1202<br>735<br>240                                                                                         | 1594<br>1594<br>1486<br>1198<br>727<br>235                                                                                                | 1624<br>1624<br>1498<br>1194<br>718<br>233                                                                                                                                                                                  | $     10 \\     364^{d} \\     1588 \\     1478 \\     1160 \\     711 \\     228   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 360<br>1620<br>1515<br>1184<br>722<br>225                                                                                | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238                                                                                            |
| v10<br>v11<br>v13<br>v16<br>v18<br>A <sub>2g</sub><br>v19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1625<br>1501<br>1197<br>734<br>238b<br>1592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572                                                                              | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607                                                                          | 360 <sup><i>d</i></sup><br>1622<br>1501<br>1216<br>742<br>241<br>1595                                                                  | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607                                                                                 | 1594<br>1594<br>1486<br>1198<br>727<br>235<br>1565                                                                                        | 123<br>353 <sup>d</sup><br>1624<br>1498<br>1194<br>718<br>233<br>1595                                                                                                                                                       | 116<br>364 <sup>d</sup><br>1588<br>1478<br>1160<br>711<br>228<br>1556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577                                                                        | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575                                                                                    |
| $     \nu 10     \nu 11     \nu 13     \nu 16     \nu 18     A_{2g}     \nu 19     \nu 20     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1625<br>1501<br>1197<br>734<br>238b<br>1592<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366                                                                      | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342                                                                  | 360 <sup><i>d</i></sup><br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371                                                          | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345                                                                         | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366                                                                          | 1624<br>1624<br>1498<br>1194<br>718<br>233<br>1595<br>1335                                                                                                                                                                  | 116<br>364 <sup>d</sup><br>1588<br>1478<br>1160<br>711<br>228<br>1556<br>1335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337                                                                | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346                                                                            |
| v10<br>v11<br>v13<br>v16<br>v18<br>A <sub>2g</sub><br>v19<br>v20<br>v21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1625<br>1501<br>1197<br>734<br>238b<br>1592<br>c<br>1319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366<br>1314                                                              | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342<br>1332                                                          | 360 <sup><i>d</i></sup><br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371<br>1335                                                  | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345<br>1333                                                                 | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366<br>1312                                                                  | 1624<br>1498<br>1194<br>718<br>233<br>1595<br>1335<br>1321                                                                                                                                                                  | $     \begin{array}{r}       716 \\       364^{d} \\       1588 \\       1478 \\       1160 \\       711 \\       228 \\       1556 \\       1335 \\       1295 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337<br>1304                                                        | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346<br>1276                                                                    |
| $\begin{array}{c} \nu_{10} \\ \nu_{11} \\ \nu_{13} \\ \nu_{16} \\ \nu_{18} \\ A_{2g} \\ \nu_{19} \\ \nu_{20} \\ \nu_{21} \\ \nu_{22} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1625<br>1501<br>1197<br>734<br>238b<br>1592<br>c<br>1319<br>1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366<br>1314<br>1144                                                      | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342<br>1332<br>c                                                     | $360^{d}$<br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371<br>1335<br>c                                                           | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345<br>1333<br>1141                                                         | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366<br>1312<br>1146                                                          | 1624<br>1498<br>1194<br>718<br>233<br>1595<br>1335<br>1321<br>1141                                                                                                                                                          | $     \begin{array}{r}       716 \\       364^{d} \\       1588 \\       1478 \\       1160 \\       711 \\       228 \\       1556 \\       1335 \\       1295 \\       1292 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337<br>1304<br>1125                                                | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346<br>1276<br>1107                                                            |
| $\begin{array}{c} \nu_{10} \\ \nu_{11} \\ \nu_{13} \\ \nu_{16} \\ \nu_{18} \\ A_{2g} \\ \nu_{19} \\ \nu_{20} \\ \nu_{21} \\ \nu_{22} \\ \nu_{23} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $     \begin{array}{r}       1625 \\       1501 \\       1197 \\       734 \\       238b \\       1592 \\       c \\       1319 \\       1144 \\       c \\       \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366<br>1314<br>1144<br>992                                               | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342<br>1332<br><i>c</i><br>993                                       | 360 <sup><i>d</i></sup><br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371<br>1335<br><i>c</i><br>1004                              | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345<br>1333<br>1141<br>986                                                  | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366<br>1312<br>1146<br>9991                                                  | 123<br>353 <sup>d</sup><br>1624<br>1498<br>1194<br>718<br>233<br>1595<br>1335<br>1321<br>1141<br>1000                                                                                                                       | $     \begin{array}{r}       716 \\       364^{d} \\       1588 \\       1478 \\       1160 \\       711 \\       228 \\       1556 \\       1335 \\       1295 \\       1292 \\       988 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337<br>1304<br>1125<br>992                                         | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346<br>1276<br>1107<br>995                                                     |
| $\begin{array}{c} \nu_{10} \\ \nu_{11} \\ \nu_{13} \\ \nu_{16} \\ \nu_{18} \\ A_{2g} \\ \nu_{19} \\ \nu_{20} \\ \nu_{21} \\ \nu_{22} \\ \nu_{23} \\ \nu_{24} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $     \begin{array}{r}       1625 \\       1501 \\       1197 \\       734 \\       238b \\       1592 \\       c \\       1319 \\       1144 \\       c \\       794 \\       \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366<br>1314<br>1144<br>992<br>793                                        | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342<br>1332<br><i>c</i><br>993<br>798                                | 360 <sup>d</sup><br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371<br>1335<br>c<br>1004<br>c                                       | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345<br>1333<br>1141<br>986<br>796                                           | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366<br>1312<br>1146<br>9991<br>797                                           | 123<br>353 <sup>d</sup><br>1624<br>1498<br>1194<br>718<br>233<br>1595<br>1335<br>1321<br>1141<br>1000<br>799                                                                                                                | $     \begin{array}{r}       716 \\       364^{d} \\       1588 \\       1478 \\       1160 \\       711 \\       228 \\       1556 \\       1335 \\       1295 \\       1292 \\       988 \\       c     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337<br>1304<br>1125<br>992<br>c                                    | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346<br>1276<br>1107<br>995<br>789                                              |
| $ \begin{array}{c} \nu_{10} \\ \nu_{11} \\ \nu_{13} \\ \nu_{16} \\ \nu_{18} \\ A_{2g} \\ \nu_{19} \\ \nu_{20} \\ \nu_{21} \\ \nu_{22} \\ \nu_{23} \\ \nu_{24} \\ \nu_{25} \\ \nu_{2$ | $     \begin{array}{r}       1625 \\       1501 \\       1197 \\       734 \\       238b \\       1592 \\       c \\       1319 \\       1144 \\       c \\       794 \\       434 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366<br>1314<br>1144<br>992<br>793<br>434                                 | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342<br>1332<br><i>c</i><br>993<br>798<br>427                         | $360^{d}$<br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371<br>1335<br>c<br>1004<br>c<br>428                                       | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345<br>1333<br>1141<br>986<br>796<br>426                                    | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366<br>1312<br>1146<br>9991<br>797<br>432                                    | 123<br>353 <sup>d</sup><br>1624<br>1498<br>1194<br>718<br>233<br>1595<br>1335<br>1321<br>1141<br>1000<br>799<br>421                                                                                                         | $     \begin{array}{r}       716 \\       364^{d} \\       1588 \\       1478 \\       1160 \\       711 \\       228 \\       1556 \\       1335 \\       1295 \\       1292 \\       988 \\                          $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337<br>1304<br>1125<br>992<br>c<br>416                             | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346<br>1276<br>1107<br>995<br>789<br>429                                       |
| $\begin{array}{c} \nu_{10} \\ \nu_{11} \\ \nu_{13} \\ \nu_{16} \\ \nu_{18} \\ A_{2g} \\ \nu_{19} \\ \nu_{20} \\ \nu_{21} \\ \nu_{22} \\ \nu_{23} \\ \nu_{24} \\ \nu_{25} \\ B_{2g} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1625<br>1501<br>1197<br>734<br>238b<br>1592<br>c<br>1319<br>1144<br><i>c</i><br>794<br>434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366<br>1314<br>1144<br>992<br>793<br>434                                 | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342<br>1332<br>c<br>993<br>798<br>427                                | 360 <sup>d</sup><br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371<br>1335<br>c<br>1004<br>c<br>428                                | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345<br>1333<br>1141<br>986<br>796<br>426                                    | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366<br>1312<br>1146<br>9991<br>797<br>432                                    | 123<br>353 <sup>d</sup><br>1624<br>1498<br>1194<br>718<br>233<br>1595<br>1335<br>1321<br>1141<br>1000<br>799<br>421                                                                                                         | $     \begin{array}{r}       716 \\       364^{d} \\       1588 \\       1478 \\       1160 \\       711 \\       228 \\       1556 \\       1335 \\       1295 \\       1292 \\       988 \\                          $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337<br>1304<br>1125<br>992<br>c<br>416                             | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346<br>1276<br>1107<br>995<br>789<br>429                                       |
| $ \begin{array}{c} \nu_{10} \\ \nu_{11} \\ \nu_{13} \\ \nu_{16} \\ \nu_{18} \\ A_{2g} \\ \nu_{19} \\ \nu_{20} \\ \nu_{21} \\ \nu_{22} \\ \nu_{23} \\ \nu_{24} \\ \nu_{25} \\ B_{2g} \\ \nu_{28} \\ \nu_{2$   | $     \begin{array}{r}       1625 \\       1501 \\       1197 \\       734 \\       238b \\       1592 \\       c \\       1319 \\       1144 \\       c \\       794 \\       434 \\       1477 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366<br>1314<br>1144<br>992<br>793<br>434<br>1469                         | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342<br>1332<br><i>c</i><br>993<br>798<br>427<br>1489<br>157          | $360^{d}$<br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371<br>1335<br>c<br>1004<br>c<br>428<br>1484<br>1484                       | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345<br>1333<br>1141<br>986<br>796<br>426<br>1489<br>1152                    | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366<br>1312<br>1146<br>9991<br>797<br>432<br>1466                            | 123         353d         1624         1498         1194         718         233         1595         1335         1321         1141         1000         799         421         1481                                       | $ \begin{array}{r} 716 \\ 364^{d} \\ 1588 \\ 1478 \\ 1160 \\ 711 \\ 228 \\ 1556 \\ 1335 \\ 1295 \\ 1292 \\ 988 \\ c \\ 416 \\ 1459 \\ 1459 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337<br>1304<br>1125<br>992<br>c<br>416<br>1476                     | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346<br>1276<br>1107<br>995<br>789<br>429<br>1463                               |
| $ \begin{array}{c} \nu_{10} \\ \nu_{11} \\ \nu_{13} \\ \nu_{16} \\ \nu_{18} \\ A_{2g} \\ \nu_{19} \\ \nu_{20} \\ \nu_{21} \\ \nu_{22} \\ \nu_{23} \\ \nu_{24} \\ \nu_{25} \\ B_{2g} \\ \nu_{28} \\ \nu_{29} \\ \nu_{28} \\ \nu_{29} \\ \nu_{2$   | $ \begin{array}{c} 1625\\ 1501\\ 1197\\ 734\\ 238b\\ 1592\\ c\\ 1319\\ 1144\\ c\\ 794\\ 434\\ 1477\\ c\\ 1000\\ 1477\\ c\\ 1000\\ 1000\\ 1477\\ c\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000$ | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366<br>1314<br>1144<br>992<br>793<br>434<br>1469<br>1183                 | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342<br>1332<br><i>c</i><br>993<br>798<br>427<br>1489<br>1174         | $360^{d}$<br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371<br>1335<br>c<br>1004<br>c<br>428<br>1484<br>1191<br>1026               | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345<br>1333<br>1141<br>986<br>796<br>426<br>1489<br>1173                    | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366<br>1312<br>1146<br>9991<br>797<br>432<br>1466<br>1156                    | 123         353d         1624         1498         1194         718         233         1595         1335         1321         1141         1000         799         421         1481         1177         1041             | $\begin{array}{c} 716\\ 364^{d}\\ 1588\\ 1478\\ 1160\\ 711\\ 228\\ 1556\\ 1335\\ 1295\\ 1295\\ 1292\\ 988\\ c\\ 416\\ 1459\\ 1180\\ 1459\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180\\ 1180$  | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337<br>1304<br>1125<br>992<br>c<br>416<br>1476<br>1165             | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346<br>1276<br>1107<br>995<br>789<br>429<br>1463<br>1184<br>1184               |
| $ \begin{array}{c} \nu_{10} \\ \nu_{11} \\ \nu_{13} \\ \nu_{16} \\ \nu_{18} \\ A_{2g} \\ \nu_{19} \\ \nu_{20} \\ \nu_{21} \\ \nu_{22} \\ \nu_{23} \\ \nu_{24} \\ \nu_{25} \\ B_{2g} \\ \nu_{28} \\ \nu_{29} \\ \nu_{28} \\ \nu_{29} \\ \nu_{30} \\ \nu_{31} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{32} \\ \nu_{33} \\ \nu_{3$   | $ \begin{array}{c} 1625\\ 1501\\ 1197\\ 734\\ 238b\\ 1592\\ c\\ 1319\\ 1144\\ c\\ 794\\ 434\\ 1477\\ c\\ 1008\\ 016\\ 016\\ 016\\ 016\\ 016\\ 016\\ 016\\ 016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366<br>1314<br>1144<br>992<br>793<br>434<br>1469<br>1183<br>1033<br>0312 | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342<br>1332<br><i>c</i><br>993<br>798<br>427<br>1489<br>1174<br>1049 | $360^{d}$<br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371<br>1335<br>c<br>1004<br>c<br>428<br>1484<br>1191<br>1038<br>024        | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345<br>1333<br>1141<br>986<br>796<br>426<br>1489<br>1173<br>c               | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366<br>1312<br>1146<br>9991<br>797<br>432<br>1466<br>1156<br>217             | 123         353d         1624         1498         1194         718         233         1595         1335         1321         1141         1000         799         421         1481         1177         1041             | $\begin{array}{c} 716\\ 364^{d}\\ 1588\\ 1478\\ 1160\\ 711\\ 228\\ 1556\\ 1335\\ 1295\\ 1295\\ 1292\\ 988\\ c\\ 416\\ 1459\\ 1180\\ 1014\\ 014\\ 1014\\ 012\\ 112\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1014\\ 1$ | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337<br>1304<br>1125<br>992<br>c<br>416<br>1476<br>1165<br>c        | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346<br>1276<br>1107<br>995<br>789<br>429<br>1463<br>1184<br>1029               |
| $ \begin{array}{c} \nu_{10} \\ \nu_{11} \\ \nu_{13} \\ \nu_{16} \\ \nu_{18} \\ A_{2g} \\ \nu_{19} \\ \nu_{20} \\ \nu_{21} \\ \nu_{22} \\ \nu_{23} \\ \nu_{24} \\ \nu_{25} \\ B_{2g} \\ \nu_{28} \\ \nu_{29} \\ \nu_{30} \\ \nu_{31} \\ \nu_{25} \\ \mu_{31} \\ \nu_{31} \\ \nu_{31} \\ \nu_{32} \\ \nu_{32} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{32} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{32} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{32} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{32} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{32} \\ \nu_{32} \\ \nu_{32} \\ \nu_{31} \\ \nu_{32} \\ \nu_{33} \\ \nu_{32} \\ \nu_{33} \\ \nu_{3$   | $ \begin{array}{c} 1625\\ 1501\\ 1197\\ 734\\ 238b\\ 1592\\ c\\ 1319\\ 1144\\ c\\ 794\\ 434\\ 1477\\ c\\ 1008\\ 816\\ 816\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1606<br>1489<br>1197<br>732<br>237 <sup>b</sup><br>1572<br>1366<br>1314<br>1144<br>992<br>793<br>434<br>1469<br>1183<br>1033<br>818  | 368<br>1632<br>1512<br>1200<br>735<br>240<br>1607<br>1342<br>1332<br>c<br>993<br>798<br>427<br>1489<br>1174<br>1049<br>817 | $360^{d}$<br>1622<br>1501<br>1216<br>742<br>241<br>1595<br>1371<br>1335<br>c<br>1004<br>c<br>428<br>1484<br>1191<br>1038<br>824<br>212 | 367<br>1633<br>1513<br>1202<br>735<br>240<br>1607<br>1345<br>1333<br>1141<br>986<br>796<br>426<br>1489<br>1173<br>c<br>817<br>212 | 124<br>351<br>1594<br>1486<br>1198<br>727<br>235<br>1565<br>1366<br>1312<br>1146<br>9991<br>797<br>432<br>1466<br>1156<br><i>c</i><br>817 | 123         353d         1624         1498         1194         718         233         1595         1335         1321         1141         1000         799         421         1481         1177         1041         813 | $\begin{array}{c} 716\\ 364^{d}\\ 1588\\ 1478\\ 1160\\ 711\\ 228\\ 1556\\ 1335\\ 1295\\ 1292\\ 988\\ c\\ 416\\ 1459\\ 1180\\ 1014\\ 813\\ 1014\\ 813\\ 815\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 360<br>1620<br>1515<br>1184<br>722<br>225<br>1577<br>1337<br>1304<br>1125<br>992<br>c<br>416<br>1476<br>1165<br>c<br>806 | 361 <sup><i>a</i></sup><br>1610<br>1485<br>1155<br>728<br>238<br>1575<br>1346<br>1276<br>1107<br>995<br>789<br>429<br>1463<br>1184<br>1029<br>809<br>809 |

<sup>*a*</sup> Modes classified according to the  $D_{4h}$  point group of metalloporphines are listed by irreducible representation. the selected modes are those that are clear in their assignment and not strongly mixed with  $E_u$  modes or out-of-plane modes. <sup>*b*</sup> Data from Li and Spiro.<sup>38</sup> <sup>*c*</sup> Mixed mode causes identity to be lost. <sup>*d*</sup> Mixed mode with both in-plane and out-of-plane character. <sup>*e*</sup> Mixed mode with only in-plane character.

smaller for the same series. For  $v_4$ , K = 323 and A = 6.28 consistent with only half as large an effect as seen for the core size marker modes ( $v_2$ ,  $v_3$ ,  $v_{10}$ , and  $v_{11}$ ). This is consistent with experimental observations of the smaller dependence of the electron density marker on core size. However, the five coordinate CO adduct (not included in the correlations in Figure 3) shows a modest change in frequency for the core size modes, but  $v_4$  shifts to 1355 cm<sup>-1</sup> in excellent agreement with values observed experimentally for five-coordinate heme adducts. There

is almost no effect on in-plane vibrations for the imidazole ligand rotated 45° so that it bisects the Np–Fe–Np angle (IM45) compared to that structure with the imidazole aligned with an Fe–Np bond (IM). The IM and IM45 calculations have identical  $A_{1g}$  frequencies and only small 1–2 cm<sup>-1</sup> shifts in the  $B_{1g}$ ,  $A_{2g}$ , and  $B_{2g}$ .

Similar trends in the core size marker modes are found in the BLYP calculation. As mentioned above the core size trend

Table 5. Axial Ligand Vibrational Modes (GGA-PW92/BLYP)

| species                                           | acronym | $_{ m GGA}^{ m  u_{ m CO}}$ | $_{ m BLYP}^{ u_{ m CO}}$ | $\delta_{ m Fe-CO} \  m GGA$ | $\delta_{ m Fe-CO} \  m BLYP$ | $     \frac{\nu_{\rm Fe-CO}}{\rm GGA} $ | $     \frac{\nu_{\rm Fe-CO}}{\rm BLYP} $ | $rac{ u_{ m Fe-Ne}}{ m GGA}$            | $     \frac{             \nu_{\mathrm{Fe-Ne}}}{\mathrm{BLYP}}     $ | $\substack{\delta_{\rm Fe-Ne-Im}\\\rm GGA}$ | $\delta_{	ext{Fe-Ne-Im}} \\ 	ext{BLYP}$ |
|---------------------------------------------------|---------|-----------------------------|---------------------------|------------------------------|-------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|
| Im                                                | IM      | 2013                        | 1995                      | 578/58                       | 555/560                       | 498                                     | 464                                      | 283/202, 189/88                          | 270/159,157/86                                                      | 190/216                                     | 188/189                                 |
| Im                                                | IMA     | 1977                        | 1952                      | 573/588                      | 559/573                       | 498                                     | 462                                      | 297/238/81                               | 289 <sup>a</sup> /237 <sup>a</sup> /78a                             | 195/223                                     | 171/223                                 |
| $Im(H_2O)$                                        | IMH2O   | 2010                        | 1993                      | 570/595                      | 577/587                       | 498                                     | 466                                      | 279/225 <sup>a</sup> /72                 | 273/185/88                                                          | 203/210                                     | 192/205                                 |
| $Im(H_2O)$                                        | IMAH2 O | 1983                        | 1957                      | 573/592                      | 565/568                       | 497                                     | 465                                      | 297/249 <sup>a</sup> /97 <sup>a</sup>    | 280/231/88                                                          | 186/222                                     | 181/218                                 |
| Im(CH <sub>3</sub> COHN <sub>2</sub> )            | IMNMA   | 2013                        | 1988                      | 585/584                      | 552/559                       | 498                                     | 464                                      | 284/205 <sup>a,b</sup> /110 <sup>a</sup> | 274/209/89                                                          | 177/191                                     | 178/188                                 |
| Im(CH <sub>3</sub> CO <sub>3</sub> <sup>-</sup> ) | IMACET  | 1993                        | 1969                      | 594/604                      | 563/573                       | 498                                     | 464                                      | 298/252 <sup>a</sup> /103 <sup>a</sup>   | 280/234/92                                                          | 202/216                                     | 188/196                                 |
| Im45                                              | IM45    | 2014                        | 2004                      | 584/588                      | 552/558                       | 495                                     | 457                                      | 281/196/86                               | 271/181 <sup>a</sup> /97                                            | 175/184                                     | 183/207                                 |
| H <sub>2</sub> O                                  | H2O     | 2012                        | 1994                      | 539/557                      | 531/547                       | 515                                     | 490                                      | 239                                      | 269                                                                 | 128                                         | 179                                     |
| None                                              | 5CO     | 1989                        | 1975                      | 510                          | 505/506                       | 560                                     | 534                                      | NA                                       | NA                                                                  | NA                                          | NA                                      |

<sup>a</sup> Significant bending mixed with Fe-N $\epsilon$  mode. <sup>b</sup> Split mode. Two modes with close to the same character are found within 5 cm<sup>-1</sup>.

is maintained here since the  $\approx 10-20 \text{ cm}^{-1}$  lower frequencies for  $\nu_2$ ,  $\nu_3$ ,  $\nu_{10}$ , and  $\nu_{11}$  are consistent with  $\approx 0.02$  Å larger core size obtained using the BLYP functional. (see Tables 2 and 4). The electron density marker mode also shows about half as large a shift as the remaining core size modes. The calculated effect on core size modes indicates that the level of calculation used is quite reasonable for modeling porphine vibrational spectra. Moreover, the trends indicate that core size expansion is an important contributing factor that will need to be considered further in connection with correlation of axial mode frequencies and the charge relay mechanism.

Axial Vibrational Modes. The axial vibrational modes given in Table 5 consist not only of the observed vibrational modes  $v_{\rm Fe-CO}$  and  $v_{\rm CO}$  but also of axial modes of the imidazole that are not observed in the Raman spectra of six-coordinate hemes. The eigenvectors for these modes are given in the Supporting Information. As will be shown below, these modes are included to account for the apparent lack of a dependence of the  $\nu_{\rm Fe-CO}$ stretch on the donor strength of the axial ligand (see Table 5). The calculated frequencies given in Table 5 for axial ligand modes that have a contribution from the Fe-N $\epsilon$  stretching coordinate include three modes (columns 9 and 10). The highest frequency mode is largely an Fe-C-O doming motion with stationary imidazole (see Supporting Information). This mode has a significant contribution of the Fe–N $\epsilon$  internal coordinate to the normal mode. The middle frequency mode has the appearance of an Fe-N $\epsilon$  stretch, although some degree of bending is found particularly for anionic imidazole models, and the PED of the Fe-N $\epsilon$  internal coordinate is typically the highest for this mode. The lowest frequency mode mostly a collective motion of the Im-Fe-C-O axis with respect to the porphine; however, it too has a small contribution from Fe-N $\epsilon$  to the normal mode. The bending modes are also included for completeness. There is a correlation between  $v_{CO}$  in columns 2 and 3 of Table 5 and  $\nu(\text{Fe}-\text{N}\epsilon)$  in columns 9 and 10 with corresponding to the bond lengths, d(C-O) and  $d(Fe-N\epsilon)$ .<sup>62</sup> [For normal modes it is difficult to define a unique internal coordinate to apply Badger's rule. The correlation used in practice is therefore between the frequency (approximately the square root of the force constant) and the bond length.] For a plot of  $v_{CO}$  vs d(C-O) the correlation coefficients are R(BLYP)= 0.99 and R(GGA) = 0.98. For a plot of  $\nu(\text{Fe}-\text{N}\epsilon)$  vs  $d(\text{Fe}-\text{N}\epsilon)$ N $\epsilon$ ) one finds R(BLYP) = 0.97 and R(GGA) = 0.67 for a fit to line.

By contrast the  $\nu_{\text{Fe}-\text{CO}}$  frequency appears nearly independent of the identity of the axial ligand. As a consequence of this lack of dependence, the calculated frequencies of the Fe–CO stretch and C–O stretch do not follow a simple  $\pi$ -back-bonding correlation. The explanation for the result requires consideration of the trans axial ligands as part of a simple three-body oscillator Im–Fe–CO where the trans imidazole is included in the normal mode. Refinements of models for the axial ligand in fivecoordinate heme adducts have been considered that relax the assumption that the Fe–N $\epsilon$  is the sole coordinate involved in PED for axial ligand modes.<sup>63</sup> In the current model calculation the relevant coordinates include both imidazole (Fe-Im) and the porphine-iron axial coordinate (Fe-P). The approximation is three-body treatment of P-Fe-Im, rather than the two-body correlation used in much of the Raman literature that discusses the Fe-Im axial ligand vibration. In the five-coordinate adducts, the refinement is justified on experimental grounds from the need to account for anomalous isotopic shift data. As discussed elsewhere, the isotope shifts are too small to be consistent with the two-body model, but they are consistent with a three-body model in which the Fe-P coordinate is included.63,64 The reduction in the contribution to the potential energy distribution (PED) from Fe–N $\epsilon$  in that case can account for the data. For six-coordinate adducts coupling of Fe-CO and Fe-Im modes across the iron should be considered. Although the PED of the Fe-C coordinate given in Table 6 is rather high for the axial  $v_{\rm Fe-CO}$  mode, there is also a significant and variable contribution from Fe–N $\epsilon$  ( $\approx$ 10%). Moreover, Table 7 shows that there is a significant off-diagonal coupling term in the force constant matrix, such that  $f(Fe-N\epsilon)(Fe-C)$  is  $\approx 10-15\%$  of f(Fe-C)and  $\approx 25\%$  of f(Fe-Ne). These effects can be considered in a simple three-body model, where it can be shown that they are consistent with an absence of shifts for the  $v_{\rm Fe-CO}$  mode. The simple derivation of the three-body equation including coupling (eq 1) is based on the Wilson FG matrix (see Supporting Information). The eigenvalues for the Fe-CO and Fe-Im axial modes are given by

$$\lambda_{\pm} = \frac{((m_1 + m_2)m_3f_{12} + (m_2 + m_3)m_1f_{23} \pm \eta^{1/2})}{2m_1m_2m_3} \quad (1)$$

$$\begin{split} \eta &= (m_1 + m_2)^2 m_3^2 f_{12}^2 + (m_2 + m_3)^2 m_1^2 f_{23}^2 - \\ &\quad 2(m_1 m_2 m_3 (m_1 + m_2 + m_3)) \times (f_{12} f_{23} - f_{123}^2) - \\ &\quad 2m_1^2 m_3^2 (f_{12} f_{23} - 2 f_{123}^2) \end{split}$$

where  $m_1$  is the mass of the CO,  $m_2$  is the mass of the iron and  $m_3$  is the mass of the imidazole. The force constants are defined as  $f_{12} = f(\text{Fe}-\text{CO}), f_{23} = f(\text{Fe}-\text{N}\epsilon)$ , and  $f_{123} = f(\text{Fe}-\text{CO})(\text{Fe}-\text{N}\epsilon)$ . Using the values  $m_1 = 28, m_2 = 56$ , and  $m_3 = 68$  au and the values  $f_{12} = 1.25, f_{23} = 2.72$ , and  $f_{123} = 0.313$  mdyn/Å from the first row of Table 7 and using the fact that  $\nu(\text{cm}^{-1}) = 1303.9\lambda^{1/2}$ , we obtain frequencies of  $\nu_{\text{Fe}-\text{CO}} = 500.4$  cm<sup>-1</sup> and  $\nu(\text{Fe}-\text{Im}) = 257.8$  cm<sup>-1</sup>. The agreement with the values from the normal-mode analysis of the entire molecule is quite

<sup>(62)</sup> Badger, R. M. J. Chem. Phys. 1934, 2, 128-131.

<sup>(63)</sup> Franzen, S.; Boxer, S. G.; Dyer, R. B.; Woodruff, W. H. J. Phys. Chem. B 2000, 104, 10359-10367.

<sup>(64)</sup> Wells, A. V.; Sage, T. J.; Morikis, D.; Champion, P. M.; Chiu, M. L.; Sligar, S. G. J. Am. Chem. Soc. **1991**, 113, 9655–9660.

 Table 6.
 Potential Energy Distributions Relevant to the Axial

 Vibrational Modes for (A) the GGA Calculation and (B) the BLYP

 Calculation

| species | $\nu_{\rm CO}$ | $\nu_{\rm Fe-C}$    | FeCO oop            | $ u_{\mathrm{Fe}-\mathrm{N}\epsilon}$ |
|---------|----------------|---------------------|---------------------|---------------------------------------|
|         |                | (A) GGA Cal         | culation            |                                       |
| IM      | 95% C-O        | 92% Fe-C            | 7% Fe $-N\epsilon$  | 36% Fe $-N\epsilon$                   |
|         | 5% Fe-C        | 6% Fe $-N\epsilon$  | 2% Fe-C             | 1% Fe-Np                              |
| IMA     | 95% C-O        | 88% Fe-C            | 29% Fe $-N\epsilon$ | 42% Fe $-N\epsilon$                   |
|         | 5% Fe-C        | 11% Fe-N $\epsilon$ | 4% Fe-C             | 2% Fe-Np                              |
| IMH2O   | 95% C-O        | 89% Fe-C            | 19% Fe $-N\epsilon$ | 30% Fe $-N\epsilon^a$                 |
|         | 5% Fe-C        | 8% Fe $-N\epsilon$  | 5% Fe-C             | 8% Fe-Np                              |
| IMAH2O  | 95% C-O        | 87% Fe-C            | 32% Fe $-N\epsilon$ | 33% Fe $-N\epsilon$                   |
|         | 5% Fe-C        | 11% Fe–N $\epsilon$ | 4% Fe-C             | 3% Fe-Np                              |
| IMNMA   | 95% C-O        | 93% Fe-C            | 6% Fe $-N\epsilon$  | 57% Fe $-N\epsilon^a$                 |
|         | 5% Fe-C        | 6% Fe-N $\epsilon$  | 2% Fe-C             | 1% Fe-Np                              |
| IMACET  | 95% C-O        | 91% Fe-C            | 21% Fe $-N\epsilon$ | 9% Fe $-N\epsilon^a$                  |
|         | 5% Fe-C        | 9% Fe $-N\epsilon$  | 3% Fe-C             | 2% Fe-Np                              |
|         |                |                     | 10% N $\delta$ -H   | 44% Nδ−H                              |
|         |                | (B) BLYP Cal        | culation            |                                       |
| IM      | 96% C-O        | 91% Fe-C            | 5% Fe $-N\epsilon$  | 50% Fe-N $\epsilon$                   |
|         | 4% Fe-C        | 4% Fe $-N\epsilon$  | 4% Fe-C             | 36% Fe $-N\epsilon^a$                 |
| IMA     | 95% C-O        | 90% Fe-C            | 12% Fe-N            | 58% Fe $-N\epsilon$                   |
|         | 5% Fe-C        | 9% Fe $-N\epsilon$  | 3% Fe-C             | 1% Fe-Np                              |
|         |                |                     |                     | $1\% \text{ C-N}\epsilon$             |
|         |                |                     |                     | 13% Fe−N <i>ϵ</i> −C                  |
| IMH2O   | 96% C-O        | 93% Fe-C            | 9% Fe-N             | 90% Fe $-N\epsilon$                   |
|         | 4% Fe-C        | 6% Fe $-N\epsilon$  | 3% Fe-C             |                                       |
| IMAH2O  | 95% C-O        | 88% Fe-C            | 14% Fe-N $\epsilon$ | 71% Fe–N $\epsilon$                   |
|         | 5% Fe-C        | 10% Fe-N $\epsilon$ | 4% Fe-C             | 4% Fe-C                               |
| IMNMA   | 95% C-O        | 86% Fe-C            | 13% Fe $-N\epsilon$ | 67% Fe $-N\epsilon^a$                 |
|         | 5% Fe-C        | 10% Fe-N $\epsilon$ | 6% Fe-C             | 1% Fe-Np                              |
|         |                |                     |                     | 30% Fe $-N\epsilon$ -C                |
| IMACET  | 95% C-O        | 88% Fe-C            | 16% Fe-N $\epsilon$ | 15% Fe–N $\epsilon$                   |
|         | 5% Fe-C        | 8% Fe–N $\epsilon$  | 5% Fe-C             | 5% Fe-C                               |

<sup>*a*</sup> Multiple low-frequency modes containing Fe $-N\epsilon$  character.

reasonable  $v_{\text{Fe}-\text{CO}} = 498 \text{ cm}^{-1}$  and  $v(\text{Fe}-\text{Im}) = 280 \text{ cm}^{-1}$  as seen in Table 5. The anionic imidazole model IMA can be modeled using the same masses and values of  $f_{12} = 1.97$ ,  $f_{23} =$ 2.67, and  $f_{123} = 0.427$  mdyn/Å from the second row of Table 5. Note that the force constant for Fe-C stretching has decreased commensurate with the longer bond length. However, the frequency for the  $v_{\text{Fe}-\text{CO}}$  stretch calculated from eq 1 is 499.7  $cm^{-1}$ , a shift of only 0.7  $cm^{-1}$ . This shift would not even be noticed if we rounded off to three significant figures as we have done for the calculated frequencies from the GGA and BLYP functionals in Tables 4 and 5. Equation 1 predicts that  $\nu$ (Fe-Im) increases to  $320.1 \text{ cm}^{-1}$ , which is larger than the increase observed in the modes that depend on Fe-N $\epsilon$ , but is in the correct direction. Of course, the PEDs are redistributed and mixing with bending coordinates is important in the all-atom calculation. These effects are ignored in eq 1. The point of this discussion is that an increase in  $f(Fe-N\epsilon)$  from 1.25 to 1.97 has an affect on the  $\nu_{\text{Fe}-\text{CO}}$  frequency that offsets the expected decrease by about 2 cm<sup>-1</sup>, and the increase in the  $f(Fe-N\epsilon)$ -(Fe-C) offsets the decrease by about 3  $cm^{-1}$  leading to an essentially equal value despite the large change in axial ligation in the IM and IMA molecules. These effects are further evident in a comparison of the PED for the  $v_{\text{Fe}-\text{CO}}$  mode in Table 6. The PED of f(Fe-C) decreases from 92% for IM to 88% for IMA and there is a corresponding increase in the contribution of  $f(Fe-N\epsilon)$  consistent with this explanation. The three-body approach works well for the IMH2O and IMAH2O calculations as well, but does not work for the IMNMA and IMACET calculation. The three-body model is useful because it helps to rationalize a complicated description that arises from the total normal coordinate analysis including 48 masses (for the IM molecule) in terms of a few parameters. It clearly does not account for all of the factors, but it can explain how it is that both GGA and BLYP calculations indicate an essentially constant value  $\nu_{Fe-CO}$  throughout the series of molecules studied here.

It is important to relate the calculations presented here to the experimental  $\pi$ -back-bonding relationship obtained for imidazole containing heme proteins, specifically globins and peroxidases. The present calculation appears to explain  $v_{CO}$  frequency lowering in quantitative terms. It also suggests that  $v_{\text{Fe}-\text{CO}}$  does not depend strongly on axial ligation. There are two points that are worth noting in this context. First, the model does not consider equatorial effects or distal trans effects. Equatorial effects that may influence  $\pi$ -back-bonding include changes in the protein electrostatic environment among different proteins. These have been modeled by studying the inductive effect of substituted porphines, and the  $\pi$ -back-bonding correlation is observed for a series of molecules where fluoro-, chloro-, or amino-substituted porphines have been compared.43 Distal effects have been studied by semiempirical methods using a unit charge at fixed distances from the CO ligand.<sup>11</sup> In that case, as well, a  $\pi$ -back-bonding correlation was found. Using the methods presented here (both GGA and BLYP)  $\pi$ -back-bonding correlations are found in calculations where systematic changes in axial charge density do not significantly affect the core size of the heme (Franzen, manuscript in preparation). Thus, a major difference between this study and preceding studies is the effects found that involve coupling of axial ligand to the heme core size. A second point that needs to be addressed is the calculational method used. It is possible that post-Hartree-Fock calculations with extensive configuration interaction would reveal a different picture than that obtained by DFT. For example, a comparison of a simple model for Im-Fe-CO with four amidinato groups instead of a porphine molecule was carried out using both MP2 and BLYP calculations for both a neutral and anionic imidazole (analogous to IM and IMA with four  $NH_2^{\delta-}$  groups instead of porphine). The Fe-Np, Fe-N $\epsilon$ , Fe-C, and C-O distances are given in Table 8. Both the MP2 and BLYP calculations agree that both the Fe-C and C-O bonds increase as the ligand becomes more basic. This trend is the same as that found for the GGA and BLYP porphine models studied here (Figure 1 and Table 2). While the agreement in terms of structure is encouraging, it does not prove that CI has been adequately treated. It has been suggested that CI is necessary to correctly determine the energy level of the N $\epsilon$  lone pair in heme enzyme model calculations.65,66 However, the excellent agreement of the in-plane vibrational modes (Figure 3) and correct relationship of  $v_{CO}$  with experimental trends (Tables 3, 5, and 12) are a good indication that the DFT approach provides reasonable treatment of the ground-state vibrational modes of interest. The result obtained here is reasonable when one considers the fact that axial ligation has a substantial  $\sigma$ -bonding character and that experimental trends for different axial ligands such as thiolates in cytochromes P-450 show a *parallel* frequency lowering for both  $\nu_{\text{Fe}-\text{CO}}$  and  $\nu_{\text{CO}}$ .<sup>1,26</sup> [This effect may be responsible for the fact that a number of  $v_{\rm Fe-CO}$  bands observed in the Raman spectrum of peroxidases and that there is not always a strong correlation between the  $v_{\rm Fe-CO}$  and  $v_{\rm CO}$  bands when multiple bands are present.]) Such a parallel frequency lowering is implied by the correlation of d(Fe-C) and d(C-O) in Table 2. The conclusion of this work is that the expected frequency lowering is largely offset by compensating  $\sigma$ -bonding and  $\pi$ -bonding effects as seen in the tradeoff between the core size effects and axial ligand effects.

<sup>(65)</sup> Stavrov, S. S.; Decusar, I. P.; Bersuker, I. B. Mol. Biol. (translated from Russian) **1988**, 22, 677–682 (Part 2).

<sup>(66)</sup> Bersuker, I. B.; Stavrov, S. S. Coord. Chem. Rev. 1988, 88, 1-68.

**Table 7.** Force Constants and Interaction Force Terms for the Stretching Internal Coordinates Relevant to the Axial Vibrational Modes Obtained from (A) the GGA Calculation and (B) the BLYP Calculation

| species | $f(\text{Fe}-\text{N}\epsilon)$ | <i>f</i> (Fe–Np) | f(C-O) | f(Fe-C)       | f(C-O)(Fe-C) | $f(Fe-N\epsilon)(Fe-C)$ | $f(\text{Fe}-\text{N}\epsilon)(\text{C}-\text{O})$ |
|---------|---------------------------------|------------------|--------|---------------|--------------|-------------------------|----------------------------------------------------|
|         |                                 |                  |        | (A) GGA Calcu | ılation      |                         |                                                    |
| IM      | 1.25                            | 1.57             | 16.6   | 2.7           | 1.00         | 0.313                   | 0.075                                              |
| IMA     | 1.97                            | 1.55/1.42        | 16.1   | 2.67          | 1.01         | 0.427                   | 0.118                                              |
| IMH2O   | 1.43                            | 1.56/1.45        | 16.    | 2.71          | 1.01         | 0.33                    | 0.078                                              |
| IMAH2O  | 2.00                            | 1.56/1.43        | 16.    | 2.64          | 1.01         | 0.414                   | 0.124                                              |
| IMNMA   | 1.29                            | 1.56             | 16.6   | 2.7           | 1.03         | 0.339                   | 0.077                                              |
| IMACET  | 1.60                            | 1.44/1.4         | 16.2   | 2.77          | 0.98         | 0.381                   | 0.140                                              |
|         |                                 |                  |        | (B) BLYP Calc | ulation      |                         |                                                    |
| IM      | 0.85                            | 1.48             | 16.5   | 2.33          | 1.03         | 0.241                   | 0.081                                              |
| IMA     | 1.44                            | 1.35             | 15.8   | 2.33          | 1.00         | 0.25                    | 0.119                                              |
| IMH2O   | 1.01                            | 1.50             | 16.5   | 2.39          | 1.0          | 0.24                    | 0.085                                              |
| IMAH2O  | 1.5                             | 1.3              | 15.9   | 2.30          | 1.00         | 0.215                   | 0.122                                              |
| IMNMA   | 1.37                            | 1.5              | 16.    | 2.25          | 1.04         | 0.215                   | 0.083                                              |
| IMACET  | 1.21                            | 1.4              | 16.1   | 2.3           | 1.01         | 0.283                   | 0.139                                              |

 Table 8.
 Geometries of the M1 Model Obtained from BLYP,

 MP2, and Hartree–Fock Calculations
 Fock Calculations

| species                                          | Fe-Np                            | $Fe-N\epsilon$                   | Fe-C                             | С-О                              |
|--------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| BLYP M1 IMA                                      | 1.942                            | 2.072                            | 1.821                            | 1.191                            |
| BLYP M1 I                                        | 1.920                            | 2.133                            | 1.794                            | 1.183                            |
| MP2 M1 IMA                                       | 1.900                            | 2.064                            | 1.868                            | 1.187                            |
| MP2 M1 IM                                        | 1.911                            | 2.169                            | 1.824                            | 1.183                            |
| HF M1 IMA                                        | 1.849                            | 1.952                            | 3.397                            | 1.135                            |
| HF M1 IM                                         | 1.853                            | 2.066                            | 2.072                            | 1.128                            |
| MP2 M1 IMA<br>MP2 M1 IM<br>HF M1 IMA<br>HF M1 IM | 1.900<br>1.911<br>1.849<br>1.853 | 2.064<br>2.169<br>1.952<br>2.066 | 1.868<br>1.824<br>3.397<br>2.072 | 1.187<br>1.183<br>1.135<br>1.128 |

| ligand | Nδ     | $N\epsilon$ | 0      |
|--------|--------|-------------|--------|
| IM     | -0.273 | -0.424      | -0.519 |
| IMH2O  | -0.279 | -0.430      | -0.514 |
| IMNMA  | -0.279 | -0.438      | -0.520 |
| IMACET | -0.300 | -0.473      | -0.558 |
| IMA    | -0.410 | -0.500      | -0.570 |
| IMAH2O | -0.488 | -0.491      | -0.565 |

Thus, equatorial and distal effects may be the principal explanation for the observed  $\pi$ -back-bonding correlation. Given the wealth of mutants available in the peroxidase and globin protein families it should be possible to use DFT methods to determine the relative extent of distal, proximal and equatorial contributions to the observed experimental correlation between  $\nu_{\text{Fe}-\text{CO}}$  and  $\nu_{\text{CO}}$ .

**Electrostatic Correlations.** In the catalytic triad of serine proteases, the effect of the charge relay is an increase in the nucleophilicity of the serine -OH group (shown as methanol in the model system) in Figure 2. The increase in the negative Mulliken charge on the serine oxygen can be seen in Table 9. Note that the negative charge on O increases proportionally to the charge on N $\epsilon$ . The charges follow a trend consistent with a dominant contribution from  $\sigma$ -bonding by N $\epsilon$  that is further corroborated by the hydrogen bonding potential energy surfaces presented below.

The charge relay mechanism results in an increase in electron density on the terminal oxygen of iron-bound oxy or peroxide. The charge distributions calculated in Tables 10 and 11 using Mulliken charges support these expected trends in the iron-porphine-O<sub>2</sub> and iron-porphine-CO models. The magnitude of the charge on the terminal oxygen for the carbonmonxoy adduct found for both the GGA-PW92 and BLYP functionals follows the degree of polarization of the imidazole due to hydrogen bonding at the N $\delta$  proton of the imidazole (IMA > IMAH2O > ACETIC > NMACET > IMH2O > IM \approx IM45). The charge relay indicated by the pattern of Mulliken charges

| Table 10. | Mulliken | Charges | for | Ferrous | Oxy | Porphine |  |
|-----------|----------|---------|-----|---------|-----|----------|--|
|-----------|----------|---------|-----|---------|-----|----------|--|

| ligand | Nδ     | $N\epsilon$ | Np     | Fe    | 0      | 0      |
|--------|--------|-------------|--------|-------|--------|--------|
| IM     | -0.252 | -0.355      | -0.529 | 0.999 | -0.121 | -0.114 |
| IMH2O  | -0.281 | -0.367      | -0.529 | 1.003 | -0.131 | -0.185 |
| IMNMA  | -0.350 | -0.368      | -0.526 | 1.031 | -0.131 | -0.178 |
| IMACET | -0.389 | -0.390      | -0.515 | 0.998 | -0.144 | -0.162 |
| IM     | -0.415 | -0.419      | -0.505 | 1.030 | -0.171 | -0.247 |
| IMAH2O | -0.431 | -0.408      | -0.509 | 1.026 | -0.156 | -0.231 |
|        |        |             |        |       |        |        |

is very similar for both the GGA-PW92 and BLYP functionals. It can be represented as  $N\delta^{\delta-}-N\epsilon^{\delta-}-Np^{\delta+}-Fe^{\delta+}-C^{\delta-}-O^{\delta-}$ . Choosing the comparison between IMA and IM as representative, the increased negative charge of  $\approx -0.2$  on N $\delta$  is due to abstraction or polarization of the N $\delta$  hydrogen. The effect on Ne is also an increase in negative charge density of  $\approx -0.05$ , which is almost exactly the same increase in negative charge density on the terminal oxygen of bound CO. Charge density moves from the iron  $\approx$ +0.02 and pyrrole nitrogens  $\approx$ +0.02 to the carbon of CO  $\approx$ -0.03. Although the comparison between IM and IMA was used here, Table 12 shows that there is an excellent correlation for the Mulliken charge parameters for all six test molecules studied here according to both the GGA and BLYP methods. Table 12 also shows that the frequency of  $\nu_{CO}$ is proportional to the negative charge on the terminal oxygen of CO. This strong correlation indicates that  $\nu_{CO}$  is an important experimental marker for the charge relay.

Comparison of species that have reduced trans ligand strength such as H2O or 5CO also have lower  $v_{CO}$  frequencies  $(\nu_{\rm CO}(5{\rm CO}) < \nu_{\rm CO}({\rm H2O}) < \nu_{\rm CO}({\rm IM}) < \nu_{\rm CO}({\rm IMH2O}))$ . This frequency-lowering effect arises from the decrease in the Fe-C bond length leading to stronger  $\pi$ -back-bonding without an associated charge relay effect. As the axial ligation gets weaker the intrinsic iron interaction with the CO dominates and although the charge distribution on CO changes little the C-O bond is weakened at the expense of a strengthened Fe-CO bond in a classic  $\pi$ -back-bonding interaction. The extreme limit of this is the five-coordinate CO adduct (5CO), which shows a large increase in  $v_{\text{Fe}-\text{CO}}$  and a decrease in  $v_{\text{CO}}$ . The lowering of  $v_{\text{CO}}$ due to weakened axial ligation and a shorter C-O bond length can be contrasted with the effect increasing the negative charge on proximal imidazole, because for the series 5CO, H2O, IM, IMH2O there is essentially no change in the charge of the terminal oxygen.

Effects of the Charge Relay on the  $\sigma$ -Bonding and  $\pi$ -Bonding Molecular Orbitals. The essence of the charge relay consists of a simultaneous decrease in  $\sigma$ -bonding and increased  $\pi$ -back-bonding of bound CO resulting from increased N $\epsilon$  charge density, which in turn arises from an increase in the

| ligand | Nδ<br>GGA | Nδ<br>BLYP | $rac{\mathrm{N}\epsilon}{\mathrm{GGA}}$ | $rac{\mathrm{N}\epsilon}{\mathrm{BLYP}}$ | Np<br>GGA | Np<br>BLYP | Fe<br>GGA | Fe<br>BLYP | C<br>GGA | C<br>BLYP | O<br>GGA | O<br>BLYP |
|--------|-----------|------------|------------------------------------------|-------------------------------------------|-----------|------------|-----------|------------|----------|-----------|----------|-----------|
| IM     | -0.254    | -0.249     | -0.330                                   | -0.342                                    | -0.518    | -0.538     | 0.827     | 0.606      | 0.190    | 0.305     | -0.239   | -0.250    |
| IMA    | -0.429    | -0.449     | -0.385                                   | -0.391                                    | -0.494    | -0.516     | 0.842     | 0.614      | 0.157    | 0.271     | -0.283   | -0.292    |
| IMH2O  | -0.281    | -0.273     | -0.336                                   | -0.346                                    | -0.516    | -0.537     | 0.829     | 0.606      | 0.188    | 0.303     | -0.242   | -0.252    |
| IMAH2O | -0.439    | -0.456     | -0.378                                   | -0.384                                    | -0.497    | -0.520     | 0.841     | 0.613      | 0.162    | 0.277     | -0.278   | -0.288    |
| IMNMA  | -0.271    | -0.265     | -0.338                                   | -0.345                                    | -0.513    | -0.534     | 0.827     | 0.605      | 0.185    | 0.296     | -0.243   | -0.254    |
| IMACET | -0.334    | -0.308     | -0.371                                   | -0.370                                    | -0.504    | -0.524     | 0.841     | 0.609      | 0.171    | 0.286     | -0.270   | -0.280    |
| IM45   | -0.253    | -0.249     | -0.329                                   | -0.337                                    | -0.516    | -0.536     | 0.829     | 0.603      | 0.18     | 0.303     | -0.238   | -0.249    |
| H2O    | NA        | NA         | $-0.438^{a}$                             | -0.403                                    | -0.489    | -0.552     | 0.554     | 0.620      | 0.284    | 0.301     | -0.18    | -0.247    |
| 5CO    | NA        | NA         | NA                                       | NA                                        |           | -0.547     | 0.563     | 0.588      | 0.291    | 0.295     | -0.182   | -0.251    |

<sup>*a*</sup> Charge on oxygen of proximal H<sub>2</sub>O ligand.

Table 12. Correlations of the Mulliken Charges

| charge<br>correlation                                                                                                                                                                                | GGA intercept, slope ( <i>R</i> )                                                                                                                      | BLYP intercept,<br>slope ( <i>R</i> )                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} N\epsilon \text{ vs } N\delta \\ O \text{ vs } N\epsilon \\ C \text{ vs } N\epsilon \\ Np \text{ vs } N\epsilon \\ Fe \text{ vs } N\epsilon \\ \nu_{CO} \text{ vs } O \end{array}$ | $\begin{array}{c} -0.26, 0.28 (0.94)\\ 0.034, 0.82 (1.00)\\ 0.38,0.58 (0.99)\\ -0.65, -0.41 (0.99)\\ 0.73, -0.30 (0.98)\\ 2221, 845 (0.95)\end{array}$ | $\begin{array}{c} -0.29,  0.22  (0.95) \\ 0.055,  0.89  (0.99) \\ 0.52,  0.63  (0.98) \\ -0.69,  -0.43  (0.99) \\ 0.55,  -0.18  (0.98) \\ 2236,  965  (0.99) \end{array}$ |

N $\delta$ -H charge due to hydrogen bonding or hydrogen abstraction. A model calculation on imidazole indicates that the N $\epsilon$  lone pair is significantly raised in energy as the N $\delta$ -H is abstracted, while the  $\pi$ -bonding MOs of imidazole are less affected (see Supporting Information). Thus, it is not principally the  $\pi$ -electron density on the imidazole that affects  $\pi$ -bonding on the trans CO ligand. Rather it is the expansion of the core size that affects  $\pi$ -bonding. The consistency of this model of the bonding is considered in the following.

The Fe-N $\epsilon$  and Fe-C bond lengths are inversely correlated indicating that increased charge density on N $\epsilon$  causes a repulsion of the trans CO ligand. The Fe-CO repulsion arises from increased electron density in an antibonding orbital that involves the N $\epsilon$  lone pair, CO lone pair, and Fe d<sub>z<sup>2</sup></sub>. This picture would seem to indicate that  $\sigma$ -antibonding effects dominate. However, this preliminary conclusion must be reconciled with the fact that both the Fe-C and C-O bond lengths are found to increase in the series IMA > IMAH2O > IMACET > IMNMA > IMH2O > IM, i.e., as the basicity of the trans ligand is increased. There is no such thing as a simple axial  $\sigma$ -bonding effect in a metalloporphyrin since an increase in the Fe-C bond length necessarily results in a decrease in the  $\pi$ -overlap with the iron and a concomitant decrease in  $\pi$ -back-bonding. Thus, the C-O bond should shorten as the Fe-C bond lengthens. However, both the experimental  $\pi$ -back-bonding correlation and the calculated C–O bond length indicate that  $\pi$ -back-bonding actually *increases* as the trans axial ligand  $\sigma$ -donor strength increases. The axial and equatorial  $\pi$ -bonding effects that arise from the shortened Fe-Np bond length account for the calculated and experimental trends.

The core size marker shifts shown in Figure 3 and the Fe– Np bond lengths are consistent with a decrease in equatorial  $\pi$ -bonding as the trans-axial donor strength increases. This means that more iron  $d\pi$  electron density and even perhaps some imidazole  $\pi$ -electron density is available for overlap with the CO  $\pi^*$  orbitals. The decrease in overlap of iron  $d\pi$  orbitals with the ring increases electron density available for the CO. This can be seen in the trends found in the Mulliken charges given in Table 11. As the electron density decreases on the pyrrole nitrogens and the iron, it increases on the carbonyl carbon and oxygen. The result of the increase in  $\pi$ -bonding density on CO will be to offset the weakening of the Fe–C bond due to



Figure 4. Calculated hydrogen bond potential energy surfaces for the hydrogen atom transfer reaction  $CH_3O-H\cdots Im \rightarrow CH_3O^{-}\cdots H-Im$ .

 $\sigma$ -antibonding interactions with trans imidazole. In addition, the C–O bond will be lengthened and its vibrational force constant lowered. Thus, the porphine ring is an essential mediator of the  $\pi$ -back-bonding effect and serves to permit a simultaneous weakening of both Fe–C and C–O bonds. The  $\pi$ -bonding effect more than compensates for the  $\sigma$ -antibonding effect on the Fe–C bond, and this bond actually increases in parallel with the C–O bond length as seen in Tables 2 and 3. These predicted trends agree with calculated bond length and frequency trends and with the experimental trends in the C–O stretching frequency.

Potential Energy Surfaces for the Effect of Hydrogen Bonding of Imidazole in a Charge Relay Mechanism. The Asp-His-Ser catalytic triad of serine proteases shown in Figure 2 has been studied in terms of the hydrogen bond between the serine oxygen (methanol in the model) and histidine N $\epsilon$ (imidazole in the model). In Figure 4, the potential energy surface for hydrogen along a CH<sub>3</sub>O–H···Im  $\rightarrow$  CH<sub>3</sub>O<sup>–</sup>···H– Im coordinate in the catalytic triad is plotted as a function of the distance from the oxygen nucleus. Stronger hydrogen bonding to N $\delta$ ∠H leads to greater basicity of N $\epsilon$  as indicated by the trend in the Mulliken charge in Table 9. The negative charge on the imidazolate of the IMA model shows the greatest change in electron density of N $\epsilon$  as well as the greatest stabilization of the hydrogen atom in the Ne····H-O hydrogen bond ( $\approx$ 51 kcal/mol relative to methanol). Significant stabilization is achieved by acetate ( $\approx$ 43 kcal/mol relative to methanol) and even H<sub>2</sub>O hydrogen-bonded to N $\delta$ -H has a profound effect ( $\approx$ 31 kcal/mol relative to methanol). The relative energies of the various hydrogen bonded species tracks the negative Mulliken charge on the serine oxygen; i.e., larger negative charge density is correlated with lower energy of deprotonation. The comparison of the serine protease catalytic triad with peroxidase models serves to underscore the fact that  $\sigma$ -bonding contributions from the imidazole are important in both. Furthermore, as we have seen above,  $\pi$ -bonding effects must be considered in the peroxidase model, while these do not appear to play a major role in the serine protease catalytic triad.



**Figure 5.** Potential energy surface for the Fe–CO bonding interaction. The surfaces have been calculated for each of the six hydrogen bond partners described in Table 1.



**Figure 6.** Potential energy surface for the C–O bond. The surfaces fall into two groups, anionic (dashed line) and neutral (solid line). The potential energy surfaces for IM and IMA are given as representative for each of the groups.

The potential energy surfaces for both Fe–CO and C–O bond dissociation have been studied for the iron–porphine–CO model molecules shown in Figure 1. Figure 5 shows the potential energy surface for the Fe–CO coordinate. The ordering of the effect on binding is the same as for the Asp-His-Ser model above. The trend indicates that increased basicity trans to the CO ligand weakens the Fe–CO bond, but the effect is significantly smaller than for the deprotonation of the serine hydroxyl shown in Figure 4. The negatively charged model adducts IMA, IMAH2O, and IMACET weaken the trans Fe–CO bond to the greatest extent ( $\approx$ 3 kcal/mol). The hydrogen bonding ligands show small effects on trans CO bonding (e.g.  $\approx$ 0.4 kcal/mol for IMH2O).

The  $\nu_{CO}$  frequencies and bond lengths are indicative of a weakening of the C-O bond as the trans axial ligand basicity increases. The weakened C-O bond is also manifest in the potential energy surface shown in Figure 6. The neutral hydrogen bond partners have essentially no effect and are identical to the IM potential energy surface (the solid line in Figure 6). The negatively charged hydrogen bond partners (IMA, IMAH2O, IMACET) weaken the C–O bond by  $\approx$ 9.5 kcal/mol and are nearly identical to the IMA potential energy surface (shown as the dashed line in Figure 6). The weakening of the bond for the IMA, IMAH2O, and IMACET molecules is consistent with their longer C-O bond lengths compared to the neutral imidazole models. The average of  $\approx 1.162$  Å for d(C-O) for IMA, IMAH2O, and IMACET should be compared to an average of  $\approx 1.157$  Å for IM, IMH2O, and IMNMA. This longer bond is associated with greater polarization as seen for the Mulliken charges for terminal oxygen, which are substantially larger for the anionic than for the neutral hydrogen bonded species. Importantly these factors are correlated with the  $\nu_{CO}$ frequency as well. The average  $\nu_{CO}$  frequency for the neutral species is  $2012 \text{ cm}^{-1}$  and that for anionic species is  $1984 \text{ cm}^{-1}$ for the GGA calculation. The calculations indicate that vibrational frequencies have relevance for interpretation of proximal charge effects in peroxidases. The bond lengthening that is calculated here is correlated with an increased negative charge

density on the terminal oxygen and a decrease in the bonding energy of the C–O bond. The calculated frequency in turn follows similar trends and agrees with experimental observations of lower  $\nu_{CO}$  stretching frequencies in peroxidases than in globins.

### Conclusion

The effect of axial ligand charge relay on the  $v_{\rm Fe-CO}$  and  $\nu_{\rm CO}$  frequencies has been studied in order to correlate observed frequencies with electronic structure. The DFT calculations indicate that there is a substantial  $\sigma$ -bonding effect as hydrogen bonding to the N $\delta$ -H proton increases the negative charge density on the imidazole ring. However, unlike models of serine proteases where the N $\epsilon$  charge density also becomes significantly more negative, the charge is transmitted to the trans axial ligand with concomitant effects on the porphine ring due to core size expansion. As the N $\epsilon$  donor strength increases the Fe–N $\epsilon$ bond shortens and the porphine ring expands reducing  $\pi$ -overlap of the ring with the  $d\pi$  orbitals of the iron. The increased Fe-Np distance converts axial changes in  $\sigma$ -bonding into  $\pi$ -bonding effects. The charge density on the iron is delocalized into the  $\pi^*$  orbital of bound CO. Thus, the core size expansion permits increased  $\pi$ -back-bonding rather than decreased  $\pi$ -back-bonding that would be expected for a lengthening of the Fe-C bond alone. The effect is seen in the simultaneous lengthening of the Fe-C and C-O bonds. This is reflected in vibrational spectra that show a decrease  $\nu_{CO}$  stretching frequency as the trans axial ligand strength increases and as the Fe–N $\epsilon$  bond shortens. However, the calculations do not show the frequency lowering expected for a longer Fe-C bond. Nor do they show a classical inverse proportionality expected for  $\pi$ -back-bonding. In fact, the  $\nu_{\text{Fe-CO}}$  stretch is nearly constant through the series of molecules studied by two DFT functionals. The competing factors that lead to a lack of change in the Fe-CO frequency include an increased force constant of the trans imidazole and stronger coupling as the two force constants become more similar. The Fe-C bond is lengthened by a  $\sigma$ -antibonding interaction and simultaneously stabilized by a stronger  $\pi$ -donor interaction from the iron arising from core size expansion of the porphine ring, and perhaps increased  $\pi$ -bonding of the trans imidazole as well. One explanation for disagreement with experimental back-bonding correlations is that the  $\pi$ -backbonding correlation may arise from distal effects. Further studies will address this point both by considering distal hydrogen bonding and by systematic comparison of the structures considered here as a function of constrained bond length to reveal trends that are difficult to ascertain when comparing different molecules. In general, the approach taken here has been to obtain general trends for six molecular models that represent possible hydrogen bonding scenarios of biological relevance.

The functional consequence of the charge relay can be described as follows. Increased hydrogen bonding on N $\delta$ -H causes a redistribution of electron density on imidazole such that there is a significant increase in donor character of the imidazole  $\pi$ -system as well as the expected effect on the N $\epsilon$  lone pair. The effect of increased  $\sigma$ -bonding by the N $\epsilon$  lone pair weakens the trans Fe-C bond. Without any compensating effects the weakened Fe-CO interaction would lead to a higher C-O stretching frequency because of a reduction in the  $\pi$ -backbonding. However, increased  $\pi$ -bonding from the porphine ring polarizes the Fe-C-O moiety further while simultaneously weakening the C-O bond. A similar effect is calculated in Fe-O-O models indicating that the terminal negative charge of

bound diatomic oxygen would also increase under the same conditions. The observed effect of the charge relay corresponds with an intuitive picture of the effect of increasing electron density of the imidazole ligand to iron supporting higher oxidation states of the iron as needed for peroxidase function. The net effect of the combined  $\sigma$ - and  $\pi$ -bonding interactions is a weakening of the O-O bond and a polarization of the terminal oxygen commensurate with the requirements for O-O bond scission in the peroxidase mechanism. The model calculations demonstrate that the  $\nu_{\rm CO}$  stretching frequency is an excellent probe of the trans axial effects. Further work should also include comparisons with oxy and peroxy species will help to determine the connection of these observables with specific energetic barriers in the mechanism. Once this is done, quantitative comparison of the  $v_{\rm CO}$  stretching frequency with charge density will lead to a means of systematically characterizing charge density in peroxidases.

Acknowledgment. S.F. acknowledges support through Grant NSF MCB-9874895. Thanks to Lee Bartolotti of the North Carolina Supercomputer Center for advice on running the calculations. Thanks to Dr. William Collier of ORU for the use of FCART. Thanks to Dennis Wertz for a critical reading of the manuscript.

**Supporting Information Available:** Tables listing energy levels and molecular orbitals from the GGA calculation, figures showing comparisons of the energy levels for different model calculations, the imidazole calculation including MO representations, an energy diagram as a function of Nd-H distance, the eigenvectors for the axial ligand modes, and the molecule derived from model M1, and text describing the derivation of eq 1 and the model M1 (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA0108988